scholarly journals Aerobic Brickbat Grit Sand (ABGS) Purifier is the Alternative Solution: Tackling the Problem of Rural Wastewater Treatment in India

2018 ◽  
Vol 13 (3) ◽  
pp. 457-464
Author(s):  
PRIYANAND AGALE ◽  
PARAG SADGIR

Rural wastewater treatment is mostly ignored in developing and undeveloped countries. The most important barrier for addressing to this problem is cost of treatment and simplified technology. Aerobic Brickbat Grit Sand (ABGS) purifier consists of four stages. Wastewater flows gravitationally through partition walls in zigzag pattern with brick bats filter; Pebble sand filter and charcoal and grit filter which facilitate removal of contaminants from domestic wastewater. In the present study, experimental model for domestic wastewater treatment was setup in the Environmental Engineering laboratory at Government College of Engineering Aurangabad, Maharashtra. Physiochemical analysis was done in August and September of 2016 the percentage removal of contaminants results shows Biological Oxygen Demand (BOD) 92% - 87%, Chemical Oxygen Demand (COD) 93 - 89%, Total Suspended Solids( TSS) 80 - 78% and Turbidity 95 - 85%. The process is considered eco-friendly and easy to install technology for domestic wastewater treatment with use of locally available material. ABGS purifier is decentralized approach of domestic wastewater treatment. Hence ABGS as an alternative solution to tackle over the problem of rural wastewater treatment.

2021 ◽  
Vol 894 (1) ◽  
pp. 012032
Author(s):  
A Magfhira ◽  
P Kinasih ◽  
D Salsabila ◽  
E Marchella ◽  
M F Fachrul

Abstract The purpose of writing this scientific paper is to analyze more deeply the management of the quality of the aquatic environment, especially regarding the treatment of domestic wastewater on a household scale. Domestic wastewater treatment with a constructed land system using Air Fern (Azolla pinnata) is expected to reduce concentration parameters such as BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and Ammonia. The growth rate of Air Fern (Azolla pinnata) after acclimatization is quite good so that it can reduce BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and Ammonia, which are a source of nutrients for plant growth so that it can be used as a promising material for plant growth. It can be used as a promising material for plant growth domestic wastewater treatment. The analysis was carried out using the blended concept, a combination of virtual, online, and laboratory/field activities (offline/outside the network) while still paying attention to health protocols. The priority of this literature study research is to provide input for the government in the form of alternative solutions for managing the quality of the aquatic environment, especially regarding domestic wastewater treatment on a household scale. In addition, this research also supports the international Sustainable Development Goals (SDGs) program: Goal 6: Access to Clean Water and Sanitation” in point 3, namely “Improving water quality by reducing pollution, eliminating waste disposal, and minimizing the disposal of chemicals and hazardous materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally”. This research can contribute to appropriate technology in environmental biotechnology, namely wastewater treatment with a system that has simple technology, low cost, energy-saving and is environmentally friendly, which can create a level of hygiene and comfort for the community and maintain environmental sustainability future.


2013 ◽  
Vol 838-841 ◽  
pp. 2739-2744
Author(s):  
Shuang Zhao ◽  
Cui Ping Wang

A novel process for improving the energy use and treatment efficiency of the biological nitrogen removal process, up-flow microaerobic-oxic (M/O) process which is composed of up-flow micro-aerobic and aeration was proposed based on a laboratory scale for domestic wastewater treatment, the dissolved oxygen (DO) in up-flow micro-aerobic was in the range of (0~0.5) mg/L. The M/O process performance under different hydraulic retention time (HRT) and Internal return ratio (r) was investigated. Under the optimal conditions, the average removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and ammonium nitrogen (NH4+-N) were 89.1%, 64.1%, and 96.6 % with effluent concentrations of COD, TN and NH4+-N less than 50,15 and 8mg/L, respectively. The distribution of sludge particles diameter and microbial activity of activated sludge were also measured, the mean particle diameter was in the range of 180~250μm and the SOURT was 13.11 mgO2/(gMLVSSh). Up-flow micro-aerobic (M/O) reactor has the advantages of more stable performance and better resistance to the load shock than the conventional A/O process within continuous running period of 130 days.


2014 ◽  
Vol 955-959 ◽  
pp. 2526-2529 ◽  
Author(s):  
John Leju Celestino Ladu ◽  
Xi Wu Lu ◽  
Ahmed Mohammed Osman

This paper examined the treatment of rural domestic wastewater. Influent and effluent samples were experimented for Chemical oxygen demand (COD), NH4+-N, NO3--N and TP in the Taihu Lake Environmental laboratory of Southeast University in Wuxi. Different hydraulic retention time (HRT) and recycle ratios were applied to appraise their influence on removal efficiency. The wastewater temperature was controlled between 20 to 24°C and pH ranges 7.6 – 8.1. The result revealed average COD, NH4+-N, NO3--N and TP removal efficiencies of 77.2, 74.1, 94 and 83% with optimum HRT of 3hrs and recycle ratio of 2 respectively. The obtained results confirmed that, the integrated processes of anoxic/oxic bioreactor and artificial wetland was viable and proficient in domestic wastewater treatment.


2013 ◽  
Vol 69 (2) ◽  
pp. 350-357 ◽  
Author(s):  
Miriam Ben-shalom ◽  
Semion Shandalov ◽  
Asher Brenner ◽  
Gideon Oron

Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was ‘natural’ and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.


Author(s):  
Bruno de Oliveira Freitas ◽  
Luan de Souza Leite ◽  
Maria Teresa Hoffmann ◽  
Antonio Wagner Lamon ◽  
Luiz Antonio Daniel

Abstract Biological reactors with immobilized biomass on free carriers have provided new perspectives for wastewater treatment, once they reduce the system size and increase the treatment capacity. In this study, the performance of three Moving Bed Biofilm Reactors (MBBR) using different carriers (with and without protected surface area) were evaluated for domestic wastewater treatment in continuous flow. Each MBBRs (i.e., R1, R2, and R3) was filled at a ratio of 50% with high-density polyethylene carriers with different characteristics: both R1-K1 and R2-Corrugated tube with protected surface and R3-HDPE flakes without protected surface. Chemical oxygen demand (COD) removal of 80 ± 5.0, 80 ± 3.5, and 78 ± 2.4% was achieved by R1, R2, and R3, respectively. The oxygen uptake by biofilm attached on the carriers was 0.0079 ± 0.0013, 0.0033 ± 0.0015, and 0.0031 ± 0.0026 μg DO·mm−2 for the K1, corrugated tube, and HDPE flakes, respectively. No significant differences were observed between the performance of the three MBBRs in terms of physico-chemical parameters (alkalinity, pH, and dissolved inorganic carbon) and COD removal. Results showed that the carrier type and its characteristics (total area and with/without protected area) did not affect the organic matter removal. Thus, the carrier without a protected surface in MBBR could be a promising low-cost option for domestic wastewater treatment.


Author(s):  
Sunarsih Sunarsih ◽  
Purwanto Purwanto ◽  
Wahyu Setia Budi

This paper presents a model for natural systems used in Wastewater Treatment Plant (WWTP) Sewon Bantul. The model is modeling development, derived from the physical and biochemical phenomena involved in the biological treatment process. The numerical solution of the resulting on 13 simultaneous systems of nonlinear equations by the Quasi_Newton. Data validation is measured by facultative pond at the inlet and outlet of the pond to the concentration of bacteria, algae, zooplankton, organic matter, detritus, organic nitrogen, NH3, organic phosphor, dissolved phosphorus, Dissolved Oxygen (DO), total coliform, faecal coliform and Biochemical Oxygen Demand (BOD). A simulation model is presented to predict ke performance regime steady state of domestic wastewater treatment facultative stabilization pond. The high degree of significant of at least 10% indicates that the effluent parameters can be reasonably accurately predicted.


2018 ◽  
Vol 13 (3) ◽  
pp. 542-554 ◽  
Author(s):  
Tessa van den Brand ◽  
Laura Snip ◽  
Luc Palmen ◽  
Paul Weij ◽  
Jan Sipma ◽  
...  

Abstract The application of sulfate reducing bacteria (SRB) to treat municipal wastewater is seldom considered. For instance, due to low sludge yield it can reduce the amount of excess sludge produced significantly. Several studies, mainly at laboratory-scale, revealed that SRB can proliferate in artificial wastewater systems at temperatures of 20°C and lower. So far, the application of SRB in a domestic wastewater treatment plant has been limited. Therefore, this study evaluates the proliferation of SRB at pilot-scale in a moderate climate. This study revealed that SRB were present and active in the pilot fed with domestic wastewater at 13°C, and outcompete methanogens. Stable, smooth and well-settled granule formation occurred, which is beneficial for full-scale application. In the Netherlands the sulfate concentration is usually low (<500 mg/L), therefore the application of SRB seems challenging as sulfate is limiting. Additional measurements indicated the presence of other sulfur sources, therefore higher sulfur levels were available, which makes it possible to remove more than 75% of the chemical oxygen demand (excluding sulfide) based on SRB activity. The beneficial application of SRB to domestic wastewater treatment might therefore be valid for more locations than initially expected.


Sign in / Sign up

Export Citation Format

Share Document