scholarly journals Meteorological Drought Analysis Using Standardized Precipitation Index

2020 ◽  
Vol 15 (3) ◽  
pp. 477-486
Author(s):  
Parthsarthi Pandya ◽  
Rohit Kumarkhaniya ◽  
Ravina Parmar ◽  
Piyush Ajani

Drought is a natural hazard which is challenging to quantify in terms of severity, duration, areal extent and impact. The present study was aimed to assess the meteorological drought for Junagadh (Gujarat), India using Standardized Precipitation Index (SPI) and evaluate its correlation with the productivity of Groundnut and Cotton. The SPI was computed for eight durations including monthly (June to August each), 3 monthly (June to August and July to September) and 6 monthly (June to November) time scales for the year1988 to 2018. The results revealed that 54% to 67% of years suffered from drought for SPI-1. Drought years based on SPI-3 and SPI-6 were 48 % to 58%. Among all the eight durations, mild drought was the most dominant drought category. Years 1993, 1999, 2002 and 2012 experienced the most severe droughts for Junagadh. Severe droughts were observed only for SPI-1 (July), SPI-3 and SPI-6. No extreme drought was witnessed in Junagadh. Correlation of groundnut yield with SPI was higher as compared to cotton for all time scales. Kharif groundnut and cotton yield were better correlated with SPI-3 and SPI-6 for Junagadh with significant correlation coefficient ranging from 0.57 to 0.79 for groundnut and 0.46 to 0.56 for cotton. Among monthly SPI, the significantly highest correlation was found for June (0.59) for groundnut and September (0.48) for cotton. The SPI-3 and SPI-6 shown ability to quantify the drought and also shown the potential of yield prediction.

MAUSAM ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 467-480
Author(s):  
PANIGRAHI BALRAM ◽  
LIANSANGPUII FANAI

In this paper standardized precipitation index (SPI) is used to assess meteorological drought for all 30 districts covering 10 agro-climatic zones in an eastern Indian state, Odisha. Monthly rainfall data of 115 years (1901-2015) for all 30 districts of Odisha are analyzed using SPI on 1, 3, 6, 9 and 12-month timescale. These timescales reflect the impact of drought on the availability of different water resources. Results indicate that in all the agro-climatic zones of Odisha, mild drought events have the highest frequencies of occurrence followed by moderate drought events for different timescales. Severe and extreme drought frequencies are comparatively lesser than mild and moderate drought frequencies. SPI analysis shows that 32-46 years are affected by mild drought, 4-16 years affected by moderate drought, 1-9 years are affected by severe drought and 1-5 years are affected by extreme drought during study period of 115 years in different agro-climatic zones of Odisha. It is observed 50.3% areas in the state are affected by drought in June out of which chances of occurrence of mild drought is maximum (28.7%). In the months of July, August and September, 51.7, 48.5 and 46.1% areas are affected by droughts. On average 49.15% areas of the entire state is affected by drought of various intensities out of which the share of mild, moderate, severe and extreme drought is 28.38, 13.28, 5.06 and 2.43%, respectively.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Anurag Malik ◽  
Anil Kumar ◽  
Priya Rai ◽  
Alban Kuriqi

Accurate monitoring and forecasting of drought are crucial. They play a vital role in the optimal functioning of irrigation systems, risk management, drought readiness, and alleviation. In this work, Artificial Intelligence (AI) models, comprising Multi-layer Perceptron Neural Network (MLPNN) and Co-Active Neuro-Fuzzy Inference System (CANFIS), and regression, model including Multiple Linear Regression (MLR), were investigated for multi-scalar Standardized Precipitation Index (SPI) prediction in the Garhwal region of Uttarakhand State, India. The SPI was computed on six different scales, i.e., 1-, 3-, 6-, 9-, 12-, and 24-month, by deploying monthly rainfall information of available years. The significant lags as inputs for the MLPNN, CANFIS, and MLR models were obtained by utilizing Partial Autocorrelation Function (PACF) with a significant level equal to 5% for SPI-1, SPI-3, SPI-6, SPI-9, SPI-12, and SPI-24. The predicted multi-scalar SPI values utilizing the MLPNN, CANFIS, and MLR models were compared with calculated SPI of multi-time scales through different performance evaluation indicators and visual interpretation. The appraisals of results indicated that CANFIS performance was more reliable for drought prediction at Dehradun (3-, 6-, 9-, and 12-month scales), Chamoli and Tehri Garhwal (1-, 3-, 6-, 9-, and 12-month scales), Haridwar and Pauri Garhwal (1-, 3-, 6-, and 9-month scales), Rudraprayag (1-, 3-, and 6-month scales), and Uttarkashi (3-month scale) stations. The MLPNN model was best at Dehradun (1- and 24- month scales), Tehri Garhwal and Chamoli (24-month scale), Haridwar (12- and 24-month scales), Pauri Garhwal (12-month scale), Rudraprayag (9-, 12-, and 24-month), and Uttarkashi (1- and 6-month scales) stations, while the MLR model was found to be optimal at Pauri Garhwal (24-month scale) and Uttarkashi (9-, 12-, and 24-month scales) stations. Furthermore, the modeling approach can foster a straightforward and trustworthy expert intelligent mechanism for projecting multi-scalar SPI and decision making for remedial arrangements to tackle meteorological drought at the stations under study.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Sign in / Sign up

Export Citation Format

Share Document