scholarly journals Meteorological drought assessment using standardized precipitation index for different agro-climatic zones of Odisha

MAUSAM ◽  
2021 ◽  
Vol 71 (3) ◽  
pp. 467-480
Author(s):  
PANIGRAHI BALRAM ◽  
LIANSANGPUII FANAI

In this paper standardized precipitation index (SPI) is used to assess meteorological drought for all 30 districts covering 10 agro-climatic zones in an eastern Indian state, Odisha. Monthly rainfall data of 115 years (1901-2015) for all 30 districts of Odisha are analyzed using SPI on 1, 3, 6, 9 and 12-month timescale. These timescales reflect the impact of drought on the availability of different water resources. Results indicate that in all the agro-climatic zones of Odisha, mild drought events have the highest frequencies of occurrence followed by moderate drought events for different timescales. Severe and extreme drought frequencies are comparatively lesser than mild and moderate drought frequencies. SPI analysis shows that 32-46 years are affected by mild drought, 4-16 years affected by moderate drought, 1-9 years are affected by severe drought and 1-5 years are affected by extreme drought during study period of 115 years in different agro-climatic zones of Odisha. It is observed 50.3% areas in the state are affected by drought in June out of which chances of occurrence of mild drought is maximum (28.7%). In the months of July, August and September, 51.7, 48.5 and 46.1% areas are affected by droughts. On average 49.15% areas of the entire state is affected by drought of various intensities out of which the share of mild, moderate, severe and extreme drought is 28.38, 13.28, 5.06 and 2.43%, respectively.

2021 ◽  
Vol 893 (1) ◽  
pp. 012022
Author(s):  
Misnawati ◽  
R Boer ◽  
F Ramdhani

Abstract Drought is a natural hazard that results from a deficiency of precipitation, leading to low soil moisture and river flows, reduced storage in reservoirs, and less groundwater recharge. This study investigates the spatial variations of drought characteristics (drought event frequency, duration, severity, and intensity). This study using the Standardized Precipitation Index (SPI) to analyse the drought characteristics in Central Java during 1990-2010. The rain gauge station data and CHIRPS rainfall data over Central Java is used to calculate the SPI index. The SPI was calculated at multiple timescales (1-, 3-, 6-, 12-, 24- and 48-month), the run theory was used for identification and characterization of drought events. Analysis of drought characteristics by SPI from 1990 to 2010 shows the longest drought event is four months, the maximum drought severity is 6.06, and the maximum drought intensity is 2.02. El Nino year probability drought occurrence reached 100% in August for moderate drought, severe drought, and extreme drought category, whereas the probability drought occurrences in the Normal and La Nina year range 0-70% for moderate drought, 0-50% for severe drought category and 0-40% for extreme drought category. The results of this study may help inform researchers and local policymakers to develop strategies for managing drought.


2019 ◽  
Vol 11 (1-2) ◽  
pp. 199-216
Author(s):  
R Afrin ◽  
F Hossain ◽  
SA Mamun

Drought is an extended period when a region notes a deficiency in its water supply. The Standardized Precipitation Index (SPI) method was used in this study to analyze drought. Northern region of Bangladesh was the area of study. Monthly rainfall data of northern region of Bangladesh was obtained from the Meteorological Department of Bangladesh. Obtained rainfall data was from 1991 to 2011 and values from 2012 to 2026 were generated using Markov model. Then SPI values from 1991 to 2026 were calculated by using SPI formula for analyzing drought. Analysis with SPI method showed that droughts in northern region of Bangladesh varied from moderately dry to severely dry conditions and it may vary from moderately dry to severely dry conditions normally in future but in some cases extreme drought may also take place. From the study, it is observed that the northern region of Bangladesh has already experienced severe drought in 1991, 1992, 1994, 1995, 1997, 1998, 2000, 2003, 2005, 2007, 2009 and 2010. The region may experience severe drought in 2012, 2015, 2016, 2018, 2019, 2021, 2022, 2023, 2024, 2025 and 2026 and extreme drought in 2012, 2014, 2016, 2023 and 2024. J. Environ. Sci. & Natural Resources, 11(1-2): 199-216 2018


2020 ◽  
Author(s):  
Radu-Vlad Dobri ◽  
Liviu Apostol ◽  
Lucian Sfîcă ◽  
Simona Țîmpu ◽  
Ion-Andrei Niță

<p>Drought can be determined by climatic conditions (atmospheric precipitation, water supply from soil accessible to the plant, moisture and air temperature and wind speed) but is also induced by environmental aspects some of them related to anthropogenic influences.</p><p>In order to monitor the drought and its impact for Romania, four indices were analyzed in the present study (SPI (Standardized Precipitation Index), PNI (Percent of Normal Index), DI (Deciles index), and ZSI (Z-score Index)), through Meteorological Drought Monitoring software, using the total daily amount of precipitation for 27 weather stations in Romania, of which 22 stations for the period 1961-2015, 4 stations for the period 1961-2000 and one station for the period 1964-2015.</p><p>Preliminary analyzes resulting from the use of these indices were correlated with 18 GWT (Großwettertypen) atmospheric circulation types of daily mean sea level pressure (SLP). This was done using COST733 class software to evaluate the influence of large-scale mechanisms of atmospheric circulation. Also, four teleconnection indices were used, more exactly AO (Arctic Oscillation), NAO (North Atlantic Oscillation), PNA (Pacific-North American Pattern) and AAO (Antarctic Oscillation) that are recognized for their effect on climatic conditions at European scale,  <br>provided by National Oceanic and Atmospheric Administration (NOAA) – Climate Prediction Center.</p><p>Therefore, according to the types of circulation, the amount of precipitation produced in certain areas and implicitly the degree of drought severity is influenced. The types of anticyclonal circulation 13, 16 or 18, for example, which occur on average in 46 (12.7%), 14 (3.9%) , respectively 20 (5.4%) days a year, cause less precipitation as known, compared to the types of cyclonal circulation 1, 2 or 17 for example with an average of 12 (3.2%), 12 (3.2%), respectively 19 (4.3%) days a year.</p><p>In terms of drought analysis indices, according to SPI, the entire analysis interval for Iasi, located in the northeast region of Romania, was 6 years of "moderately dry", 5 years of "severely dry", and one year of "extremely dry", unlike Cluj, located in the central western region, with two years of "moderately dry", 3 years of "severely dry" and two years of "extremely dry". In Bucharest, located in the southern region of Romania there were 4 "moderately dry" years and 5 "severely dry" years. In Iasi, according to the ZSI index with the same classifications as the SPI index, there were 3 "moderately drought" years, 7 "severely drought" years and 7 "extreme drought" years, while in Cluj there were 9, 3 and respectively 6 years and in Bucharest 7, 5 and respectively 6 years with the above classification.</p><p>According to the PNI index, there were 5 "moderate drought" years in Iasi and Cluj and 6 "moderate drought" years in Bucharest. Also, there were 9 "weak drought" years in Iasi, 3 in Cluj and 5 in Bucharest.</p><p>And last but not least, according to the DI index, at all 3 stations there were 5 "extreme drought" years, 6 "severe drought" years and 5 "moderate drought" years.</p>


Author(s):  
Md. Anarul H. Mondol ◽  
Subash C. Das ◽  
Md. Nurul Islam

Bangladesh is one of the vulnerable countries of the world for natural disasters. Drought is one of the common and severe calamities in Bangladesh that causes immense suffering to people in various ways. The present research has been carried out to examine the frequency of meteorological droughts in Bangladesh using the long-term rainfall data of 30 meteorological observatories covering the period of 1948–2011. The study uses the highly effective Standardized Precipitation Index (SPI) for drought assessment in Bangladesh. By assessing the meteorological droughts and the history of meteorological droughts of Bangladesh, the spatial distributions of meteorological drought indices were also analysed. The spatial and temporal changes in meteorological drought and changes in different years based on different SPI month intervals were analysed. The results indicate that droughts were a normal and recurrent feature and it occurred more or less all over the country in virtually all climatic regions of the country. As meteorological drought depends on only rainfall received in an area, anomaly of rainfall is the main cause of drought. Bangladesh experienced drought in the years 1950, 1951, 1953, 1954, 1957, 1958, 1960, 1961, 1962, 1963, 1965, 1966, 1967 and 1971 before independence and after independence Bangladesh has experienced droughts in the years 1972, 1973, 1975, 1979, 1980, 1983, 1985, 1992, 1994, 1995, 2002, 2004, 2006, 2009 and 2011 during the period 1948–2011. The study indicated that Rajshahi and its surroundings, in the northern regions and Jessore and its surroundings areas, the island Bhola and surrounding regions, in the south-west region, were vulnerable. In the Sylhet division, except Srimongal, the areas were not vulnerable but the eastern southern sides of the districts Chittagong, Rangamati, Khagrachhari, Bandarban and Teknaf were vulnerable. In the central regions, the districts of Mymensingh and Faridpur were more vulnerable than other districts.


2021 ◽  
Vol 13 (3) ◽  
pp. 1042 ◽  
Author(s):  
Varsha Pandey ◽  
Prashant K Srivastava ◽  
Sudhir K Singh ◽  
George P. Petropoulos ◽  
Rajesh Kumar Mall

Drought hazard mapping and its trend analysis has become indispensable due to the aggravated impact of drought in the era of climate change. Sparse observational networks with minimal maintenance limit the spatio-temporal coverage of precipitation data, which has been a major constraint in the effective drought monitoring. In this study, high-resolution satellite-derived Climate Hazards Group Infrared Precipitation with Station (CHIRPS) data has been used for computation of Standardized Precipitation Index (SPI). The study was carried out in Bundelkhand region of Uttar Pradesh, India, known for its substantial drought occurrences with poor drought management plans and lack of effective preparedness. Very limited studies have been carried out in assessing the spatio-temporal drought in this region. This study aims to identify district-wide drought and its trend characterization from 1981 to 2018. The run theory was applied for quantitative drought assessment; whereas, the Mann-Kendall (MK) test was performed for trend analysis at seasonal and annual time steps. Results indicated an average of nine severe drought events in all the districts in the last 38 years, and the most intense drought was recorded for the Jalaun district (1983–1985). A significant decreasing trend is observed for the SPI1 (at 95% confidence level) during the post-monsoon season, with the magnitude varying from −0.16 to −0.33 mm/month. This indicates the increasing severity of meteorological drought in the area. Moreover, a non-significant falling trend for short-term drought (SPI1 and SPI3) annually and short- and medium-term drought (SPI1, SPI3, and SPI6) in winter months have been also observed for all the districts. The output of the current study would be utilized in better understanding of the drought condition through elaborate trend analysis of the SPI pattern and thus helps the policy makers to devise a drought management plan to handle the water crisis, food security, and in turn the betterment of the inhabitants.


2020 ◽  
Vol 15 (3) ◽  
pp. 477-486
Author(s):  
Parthsarthi Pandya ◽  
Rohit Kumarkhaniya ◽  
Ravina Parmar ◽  
Piyush Ajani

Drought is a natural hazard which is challenging to quantify in terms of severity, duration, areal extent and impact. The present study was aimed to assess the meteorological drought for Junagadh (Gujarat), India using Standardized Precipitation Index (SPI) and evaluate its correlation with the productivity of Groundnut and Cotton. The SPI was computed for eight durations including monthly (June to August each), 3 monthly (June to August and July to September) and 6 monthly (June to November) time scales for the year1988 to 2018. The results revealed that 54% to 67% of years suffered from drought for SPI-1. Drought years based on SPI-3 and SPI-6 were 48 % to 58%. Among all the eight durations, mild drought was the most dominant drought category. Years 1993, 1999, 2002 and 2012 experienced the most severe droughts for Junagadh. Severe droughts were observed only for SPI-1 (July), SPI-3 and SPI-6. No extreme drought was witnessed in Junagadh. Correlation of groundnut yield with SPI was higher as compared to cotton for all time scales. Kharif groundnut and cotton yield were better correlated with SPI-3 and SPI-6 for Junagadh with significant correlation coefficient ranging from 0.57 to 0.79 for groundnut and 0.46 to 0.56 for cotton. Among monthly SPI, the significantly highest correlation was found for June (0.59) for groundnut and September (0.48) for cotton. The SPI-3 and SPI-6 shown ability to quantify the drought and also shown the potential of yield prediction.


2021 ◽  
Vol 8 (1) ◽  
pp. 40
Author(s):  
Rogert Sorí ◽  
Rafael Méndez-Tejeda ◽  
Milica Stojanovic ◽  
José Carlos Fernández-Alvarez ◽  
Albenis Pérez-Alarcón ◽  
...  

The phenomenon of drought is one of the most dangerous for small islands because of its impacts on freshwater availability. Thus, in this study, the spatio-temporal evolution of meteorological drought that affected the main island of Puerto Rico in the period 1950–2019 was investigated. In doing so, the Standardized Precipitation–Evapotranspiration Index (SPEI), using monthly values of minimum and maximum temperatures and precipitation derived from Daymet Version 4 daily data at a 1 km × 1 km spatial resolution, was used. At a 1 month temporal scale, the SPEI showed great temporal variability, but there was a clear tendency towards wetting in the last years of the study period. A total of 85 meteorological drought episodes were identified. The spatial analysis also revealed that major affectation by moderate drought conditions occurred across the half west and south of the island, by severe drought also in the west half of the island but also along the eastern coast, and finally the extreme drought conditions, which were less frequent, principally affected the northeast of the country. A trend analysis of the area affected by moderate, severe, and extreme drought conditions revealed a tendency to decrease, which is reflected by the prevalence of positive spatial trends of the SPEI1 across the country.


2015 ◽  
pp. 59-64
Author(s):  
Bernadett Gálya ◽  
Attila Nagy ◽  
Lajos Blaskó ◽  
Boglárka Dályai ◽  
János Tamás

Agriculture has always been an important role in economy, food supplies, sustainability of society and creation of job opportunities in Hungary. Our country has resource-related strength of agriculture, because we have more than 4.5 million ha for agricultural production. Agricultural production can be influenced by several factors, including climate, hydrology, soil conditions and antropogenic impacts. Climate determines the quality and quantity of the crop yields. The climate conditions in Hungary are variable and it shows spatial and temporal extremes. As a result of this, drought have become more frequent in our country (2003, 2007, 2009, 2012), which is reflected in the decline in yields as well. In the present study, Pálfai's Drought Index (PAI) and the Standardized Precipitation Index (SPI) were compared 2003–2012 in Debrecen. The temperature and precipitation data were calculated from data provided by a local meteorological station to work out PAI, while the SPI-3 index values were downloaded from the database of the European Drought Observatory. This allowed to drought assessment in a local and regional scale. Our study was supplemented with SPI-3, soil moisture anomalies, PAI and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) to evaluating the impact of drought on agriculture.


2020 ◽  
Vol 24 (4) ◽  
pp. 713-717
Author(s):  
C.S. Ekwezuo ◽  
J.C. Madu

Drought Indices are extensively adopted as a drought detection and monitoring tool in all climatic regions. This study assesses and compares the performance of four rainfall based drought indices, Deciles index (DI), Percent of Normal Index (PNI), Standardized Precipitation Index (SPI) and Z-score Index (ZSI) in detection and classification of drought events in Imo state , a humid environment of Nigeria from (1982 to 2016). The resultshows that droughts do occur in humid climatic region of Nigeria. The various indices differ in their detection and classification of drought events in the study area. However, they classified 2007 and 2008 as the year with the most severe drought event in the state. There is high correlation (r > 0.70) among the four indices, with ZSI and PNI showing the highest relationship to SPI (r= 0.97). The differences observed among the drought indices in detecting drought events in the study area can be reduced by using multiple drought indices in addition to the use of SPI in drought assessments especially in Nigeria since technological advancement in drought monitoring software’s has made it easier. Also it is worthwhile to research on why drought detection varies with indices. Keywords: Drought assessment, Rainfall-based drought indices, humid environment, Imo state, Nigeria.


2019 ◽  
Vol 5 (7) ◽  
pp. 1590-1598 ◽  
Author(s):  
Zaidoon T. Abdulrazzaq ◽  
Raghad H. Hasan ◽  
Nadia A. Aziz

Droughts are a major problem in Iraq especially in the Arid and Semi-Arid Lands where they are frequent and causes a great deal of suffering and loss. Drought monitoring and forecasting requires extensive climate and meteorological data which is usually largely missing in developing countries or not available in the required spatial and temporal resolutions. In this study, the drought categories were defined for the years 2000, 2005, 2010, 2015 and 2017 using the TRMM data to map the spatiotemporal meteorological drought, and the Standardized Precipitation Index (SPI) to analyze the meteorological drought at 11 stations located in Western Iraq. The SPI analyses were performed on 12-month datasets for five years. The results showed that the northeast region has the higher rainfall indices and the southwest region has the lowest rainfall. An analysis of the drought and rain conditions showed that the quantity of extreme drought events was higher than that expected in the study area, especially in the south and southwest areas. Therefore, an alternate classification is proposed to describe the drought, which spatially classifies the drought type as mild, moderate, severe and extreme. In conclusion, the integration between TRMM data SPI data proved to be an effective tool to map the spatial distribution and drought assessment in the study area.


Sign in / Sign up

Export Citation Format

Share Document