scholarly journals Prayagraj: Air Pollution Profile and Policy Recommendations

2020 ◽  
Vol 15 (3) ◽  
pp. 560-573
Author(s):  
Sugandh Kumar Choudhary

Air pollution is the fifth leading risk factor behind theworld – wide mortality. Ever growing population size feeding industrial activity through demand channel, vehicular pollution accompanied by rapid urbanization and burning of fossil fuels pose a serious threat to clean air. Some major air pollutants under study in the city of Prayagraj are Nitrogen Dioxide (NO2), Particulate Matter (PM10) and Sulphur Dioxide (SO2). Pollution profile of the city localityi.e. Rambagh, Johnstonganj, Alopibagh, Crossing Mahalakshmi talkies and Bharat Yantra Nigam are studied. PM10 level of exposure is serious in Crossing Mahalakshmi talkiesand Alopibagh area as exposure to very high level in the range of 250 – 400 µg/m3 occurs for the longest duration of time. Alopibagh, Johnstonganj and Rambagh shows critical level of Nitrogen Dioxide indicating higher vehicular movement in these areas. Trend wise, SO2 component has spiked above 12 µg/m3 at Rambagh, Johnstonganj and Alopibagh during the onset of winters season in 2016. Similar phenomenon was seen at Bharat Yantra Nigam and Crossing Mahalakshmi talkies during winter season of 2019. Arrival of monsoon tend to lower pollutants content in the outdoor ambient air quality. Overall air quality is in critical zone at Alopibagh for 45 per cent of the time period followed by Johnstonganj. Crossing Mahalakshmi talkies and Bharat Yantra Nigamshows critical air quality for more than 60 per cent of the time period which calls for urgent action to prevent them from entering the critical zone. Overall air quality of Prayagraj is range bound with air pollutants improve during the monsoon season. However, improvement in air quality has reduced in the last two years as fall in air pollutants is less in 2018 and 2019 monsoon compared to previous two years. The findings of the paper will help the administration, municipal corporation and various stake holders of the city to take targeted measures locality wise towards pollution control depending upon pollutants concentration and exposure area – wise. It will also raise public awareness about pollutant levels in their area.

2021 ◽  
Author(s):  
K C Gouda ◽  
Priya Singh ◽  
P Nikhilasuma ◽  
Mahendra Benke ◽  
Reshama Kumari ◽  
...  

Abstract The Coronavirus disease 2019 (COVID-19), which became a global pandemic by March 2020 (WHO, 2020), forced almost all countries over the world to impose the lockdown as a measure of social distancing to control the spread of infection. India also strictly implemented a countrywide lockdown, starting from 24th March onwards. This measure resulted in the reduction of the sources of air pollution in general; industrial, commercial, and vehicular pollution in particular, with visible improvement in Ambient Air Quality. In this study, the impact of COVID-19 lockdown on the ambient concentration of air pollutants over the city of Bengaluru (India) is assessed using Continuous Ambient Air Quality Measurement (CAAQM) data from 10 monitoring stations spread across the city. The data was obtained from Central Pollution Control Board (CPCB) and Karnataka State Pollution Control Board (KSPCB). The analysis of the relative changes in the ambient concentration of six major air pollutants (NO, NO2, NOX, PM2.5, O3, and SO2) been carried out for two periods; March-May 2020 (COVID-19 lockdown) and the corresponding period of 2019 which was Non-COVID. The analysis revealed significant reduction in the concentration of ambient air pollutants at both daily and monthly intervals. This can be attributed to the reduction in sources of emission; vehicular traffic, industrial, and other activities. The average reduction in the concentration of NO, NO2, NOX, PM2.5, and O3 between 1st March to 12th May 2020 was found to be 63%, 48%, 48%, 18%, and 23% respectively when compared to the same period in 2019. Similarly, the comparative analysis of pollutant concentrations between pre-lockdown (March 01- March 23) and lockdown (Mar 24-May 12) period, shown a huge reduction in the ambient concentration of air pollutants; 47.3% (NO), 49% (NO2), 49% (NOX), 10% (SO2), 37.7% (PM2.5), and 15.6% (O3), resulting in improved air quality over Bangalore during the COVID-19 lockdown period. It is shown that the strict lockdown resulted in a significant reduction in the pollution levels. Such lockdowns may be useful as emergency intervention strategies to control air pollution in megacities when ambient air quality deteriorates dangerously.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 431
Author(s):  
Ayako Yoshino ◽  
Akinori Takami ◽  
Keiichiro Hara ◽  
Chiharu Nishita-Hara ◽  
Masahiko Hayashi ◽  
...  

Transboundary air pollution (TAP) and local air pollution (LAP) influence the air quality of urban areas. Fukuoka, located on the west side of Japan and affected by TAP from the Asian continent, is a unique example for understanding the contribution of LAP and TAP. Gaseous species and particulate matter (PM) were measured for approximately three weeks in Fukuoka in the winter of 2018. We classified two distinctive periods, LAP and TAP, based on wind speed. The classification was supported by variations in the concentration of gaseous species and by backward trajectories. Most air pollutants, including NOx and PM, were high in the LAP period and low in the TAP period. However, ozone was the exception. Therefore, our findings suggest that reducing local emissions is necessary. Ozone was higher in the TAP period, and the variation in ozone concentration was relatively small, indicating that ozone was produced outside of the city and transported to Fukuoka. Thus, air pollutants must also be reduced at a regional scale, including in China.


Author(s):  
Aneri A. Desai

In Indian metropolitan cities, the extensive growth of the motor vehicles has resulted in the deterioration of environmental quality and human health. The concentrations of pollutants at major traffic areas are exceeding the permissible limits. Public are facing severe respiratory diseases and other deadly cardio-vascular diseases In India. Immediate needs for vehicular air pollution monitoring and control strategies for urban cities are necessary. Vehicular emission is the main source of deteriorating the ambient air quality of major Indian cities due to rapid urbanization. Total vehicular population is increased to 15 Lacks as per recorded data of Regional Transport Organization (RTO) till 2014-2015. This study is focused on the assessment of major air pollution parameters responsible for the air pollution due to vehicular emission. The major air pollutants responsible for air pollution due to vehicular emissions are PM10, PM2.5, Sox, Nox, HC, CO2 and CO and Other meterological parameters like Ambient temperature, Humidity, Wind direction and Wind Speed. Sampling and analysis of parameters is carried out according to National Ambient Air Quality Standards Guidelines (NAAQS) (2009) and IS 5128.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Hoang Ngoc Khue Vu ◽  
Quang Phuc Ha ◽  
Duc Hiep Nguyen ◽  
Thi Thu Thuy Nguyen ◽  
Thoai Tam Nguyen ◽  
...  

Along with its rapid urban development, Ho Chi Minh City (HCMC) in recent years has suffered a high concentration of air pollutants, especially fine particulate matters or PM2.5. A comprehensive study is required to evaluate the air quality conditions and their health impact in this city. Given the lack of adequate air quality monitoring data over a large area of the size of HCMC, an air quality modeling methodology is adopted to address the requirement. Here, by utilizing a corresponding emission inventory in combination with The Air Pollution Model-Chemical Transport Model (TAPM-CTM), the predicted concentration of air pollutants is first obtained for PM2.5, NOx, and SO2. Then by associating the pollutants exposed with the mortality rate from three causes, namely Ischemic Heart Disease (IHD), cardiopulmonary, and lung cancer, the impact of air pollution on human health is obtained for this purpose. Spatial distribution has shown a high amount of pollutants concentrated in the central city with a high density of combustion vehicles (motorcycles and automobiles). In addition, a significant amount of emissions can be observed from stevedoring and harbor activities, including ferries and cargo handling equipment located along the river. Other sources such as household activities also contribute to an even distribution of emission across the city. The results of air quality modeling showed that the annual average concentrations of NO2 were higher than the standard of Vietnam National Technical Regulation on Ambient Air Quality (QCVN 05: 2013 40 µg/m3) and World Health Organization (WHO) (40 µg/m3). The annual average concentrations of PM2.5 were 23 µg/m3 and were also much higher than the WHO (10 µg/m3) standard by about 2.3 times. In terms of public health impacts, PM2.5 was found to be responsible for about 1136 deaths, while the number of mortalities from exposure to NO2 and SO2 was 172 and 89 deaths, respectively. These figures demand some stringent measures from the authorities to potentially remedy the alarming situation of air pollution in HCM City.


Author(s):  
Janis Kleperis ◽  
Gunars Bajars ◽  
Ingrida Bremere ◽  
Martins Menniks ◽  
Arturs Viksna ◽  
...  

Air Quality in Riga and Its Improvement Options Air quality in the city of Riga is evaluated from direct monitoring results and from accounting registered air pollutants in the city. It is concluded that from all air polluting substances listed in the European Commission directives, only nitrogen dioxide NO2 and particulate matter PM10 exceed the limits. In assessing the projected measures to improve air quality in Riga, it can be concluded that the implementation of cleaner fuels and improvements in energy efficiency of household and industrial sectors will decrease particle pollution, but measures in the transport sector will also contribute to reducing air pollution from nitrogen oxides.


Author(s):  
Omar Kairan ◽  
Nur Nasehah Zainudin ◽  
Nurul Hasya Mohd Hanafiah ◽  
Nur Emylia Arissa Mohd Jafri ◽  
Fukayhah Fatiha @Suhami ◽  
...  

Air pollution has become an issue at all rates in the world. In Malaysia, there is a system is known as air quality index (API) used to indicate the overall air quality in the country where the air pollutants include or the new ambient air quality standard are sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and particulate matter with size less than 10 (PM10). The concentration levels of the air pollutants were said to be affected by the monsoon changes. Therefore, this study is conducted to examine the existence of temporal variations of each air pollutant then identify the differences of each air pollutants concentration in temporal variations. This study uses secondary data where data that has been retrieved from the Department of Environment (DOE) where it is data of air pollution specifically for Kota Bharu, kelantan records. Hierarchical agglomerative cluster analysis was conducted to group monthly air quality. As a conclusion, the study can conclude that the five air pollutants grouped into several different monthly clusters mostly representing the two main monsoon seasons. Mostly air pollutant varied accordingly towards the monsoon season. During the southwestern monsoon, air pollutant concentration tends to higher compare to the northeastern monsoon with mostly due to meteorological factors.


Noise Mapping ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Chiara Bartalucci ◽  
Francesco Borchi ◽  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi ◽  
...  

Abstract The introduction of Low Emission Zones, urban areas subject to road traffic restrictions in order to ensure compliance with the air pollutants limit values set by the European Directive on ambient air quality (2008/50/EC), is a common and well-established action in the administrative government of cities. The impacts on air quality improvement are widely analysed, whereas the effects and benefits concerning the noise have not been addressed in a comprehensive manner. As a consequence, the definition, the criteria for the analysis and the management methods of a Noise Low Emission Zone are not clearly expressed and shared yet. The LIFE MONZA project (Methodologies fOr Noise low emission Zones introduction And management - LIFE15 ENV/IT/000586) addresses these issues. The first objective of the project, co-funded by the European Commission, is to introduce an easy-replicable method for the identification and the management of the Noise Low Emission Zone, an urban area subject to traffic restrictions, whose impacts and benefits regarding noise issues will be analyzed and tested in the pilot area of the city of Monza, located in Northern Italy. Background conditions, structure, objectives of the project and actions’ progress will be discussed in this article.


2021 ◽  
Author(s):  
Denise Berger

Since the rulings of the Federal Administrative Court (BVerwG) of 27 February 2018 on the Stuttgart and Düsseldorf air pollution control plans, diesel driving bans have become one of the best-known but also most controversial measures in the context of air pollution control planning. The reason for this is that the limit value for nitrogen dioxide, which is based on the requirements of the Ambient Air Quality Directive under EU law, is exceeded, particularly in conurbations. Taking into account the legal and administrative court requirements for the proportionality of traffic bans, the current challenges for the instrument of the air pollution control plan are shown and the implementation of planned measures in practice is examined on the basis of selected air pollution control plans.


2019 ◽  
Vol 9 (7) ◽  
pp. 1479
Author(s):  
DARIMI DARIMI ◽  
Ikhwan Siregar YUSNI ◽  
Anita SOFIA ◽  
FIRDAUS FIRDAUS ◽  
SYAHRIL SYAHRIL

Air pollution will make the city environment unhealthy and can interfere with human health, therefore one must strive to not increase air pollution. One way to reduce air pollution in cities is to reduce carbon emissions and build Green Open Spaces (GOS). Therefore, the purpose of this study is to create a model for distribution of motor vehicle exhaust emissions in the city of Pekanbaru. Air pollution at a certain level can be a combination of one or more pollutants, either in the form of solids, liquids or incoming gases dispersed into the air and then spread to the surrounding environment. Further analysis of environmental factors in the form of socio-cultural, economic and ecological factors are explored in this study. Other important environmental parameters in pollutant studies are ecological factors as well. While the economic factors in question is the willingness to pay, it shows the minimum cost needed to anticipate the amount of exhaust emissions caused by motorized vehicles and calculate the economic value associated with public health. The emission of gas produced by each vehicle is below the predetermined standard quality threshold, namely LH Regulation No. 12 of 2010. Although the measurement results in Table 1 do not exceed ambient air quality standards, but the increase in a trend that can cause air quality deterioration was detected. The components in these two strategies need to get more emphasis and attention so that the existence of charcoal trading business can be sustainable. The results obtained from this study are a model of exhaust gas distribution in the form of gas emission distribution contours supported by ecological data (E), economics (E) and socio-cultural (S), especially in creating recommendation models in policy making both in the form of laws, government regulations or regional regulations, which is the simplest prerequisite for motor vehicle owners when the vehicle registration is extended. This model is better known as the E2S + H model.


Author(s):  
D. Oxoli ◽  
J. R. Cedeno Jimenez ◽  
M. A. Brovelli

Abstract. Scientific evidence has demonstrated that deterioration of ambient air quality has increased the number of deaths worldwide by appointing air pollution among the most pressing sustainability concerns. In this context, the continuous monitoring of air quality and the modelling of complex air pollution patterns is critical to protect population and ecosystems health. Availability of air quality observations has terrifically improved in the last decades allowing – nowadays – for extensive spatial and temporal resolved analysis at both global and local scale. Satellite remote sensing is mostly accountable for this data availability and is promising to foster air quality monitoring in support of traditional ground sensors measurements. In view of the above, this study compares observations from the Sentinel-5P mission of the European Copernicus Programme (the most recent Earth Observation platform providing open measurements of atmospheric constituents) with traditional ground measurements to investigate their space and time correlations across the Lombardy region (Northern Italy). The correlation analysis focused on nitrogen dioxide. The use of data collected during the COVID-19 pandemic allowed for a parallel exploration of the lockdown effects on nitrogen dioxide emissions. Results show a marked decrease in nitrogen dioxide concentrations during the lockdown and an overall strong positive correlation between satellite and ground sensors observations. These experiments are preparatory for future activities that will focus on the development of satellite-based air quality local prediction models, aiming at improving the granularity of the ground-based information available for air quality monitoring and exposure modelling.


Sign in / Sign up

Export Citation Format

Share Document