Model of Motor Vehicle Gas Distribution Based on Ecology- Health, Economic, Social-Cultural and Law Factors in the City of Pekanbaru

2019 ◽  
Vol 9 (7) ◽  
pp. 1479
Author(s):  
DARIMI DARIMI ◽  
Ikhwan Siregar YUSNI ◽  
Anita SOFIA ◽  
FIRDAUS FIRDAUS ◽  
SYAHRIL SYAHRIL

Air pollution will make the city environment unhealthy and can interfere with human health, therefore one must strive to not increase air pollution. One way to reduce air pollution in cities is to reduce carbon emissions and build Green Open Spaces (GOS). Therefore, the purpose of this study is to create a model for distribution of motor vehicle exhaust emissions in the city of Pekanbaru. Air pollution at a certain level can be a combination of one or more pollutants, either in the form of solids, liquids or incoming gases dispersed into the air and then spread to the surrounding environment. Further analysis of environmental factors in the form of socio-cultural, economic and ecological factors are explored in this study. Other important environmental parameters in pollutant studies are ecological factors as well. While the economic factors in question is the willingness to pay, it shows the minimum cost needed to anticipate the amount of exhaust emissions caused by motorized vehicles and calculate the economic value associated with public health. The emission of gas produced by each vehicle is below the predetermined standard quality threshold, namely LH Regulation No. 12 of 2010. Although the measurement results in Table 1 do not exceed ambient air quality standards, but the increase in a trend that can cause air quality deterioration was detected. The components in these two strategies need to get more emphasis and attention so that the existence of charcoal trading business can be sustainable. The results obtained from this study are a model of exhaust gas distribution in the form of gas emission distribution contours supported by ecological data (E), economics (E) and socio-cultural (S), especially in creating recommendation models in policy making both in the form of laws, government regulations or regional regulations, which is the simplest prerequisite for motor vehicle owners when the vehicle registration is extended. This model is better known as the E2S + H model.

2014 ◽  
Vol 567 ◽  
pp. 3-7 ◽  
Author(s):  
Nurul Izma Mohammed ◽  
Nurfadhilah Othman ◽  
Khairul Bariyah Baharuddin

Complaints on poor air quality in an enclosed car park have been raised up among the public, which might cause serious health effects to the drivers, passengers, and labours who are working at the premises. Improper design of mechanical ventilation systems in a car park would result in a poor indoor environment. The exhaust emission of motor vehicle contains a variety of potentially harmful substances encompassing carbon monoxide, nitrogen oxides, sulphur dioxide, hydrocarbons, and fine particulates. In Kuala Lumpur, there is a great demand but a short supply of lands and building spaces. Thus, a large multi-storey underground car parks is a common solution for both, the government and developers. Although the health effects of the motor vehicle emissions and ambient air pollution are already known, but due to the nature of enclosed multi-storey car parks, these health risks are predicted to be intensified. Thus, it is crucial to investigate and evaluate the status of the air pollution in the enclosed car parks with emphasis on sulphur dioxide (SO2) and nitrogen dioxides (NO2). Samples were collected in one of the famous shopping malls in Kuala Lumpur using a GrayWolf Advanced Sense Direct Sense; Toxic Gas Test Meters from 8 am until 5 pm on weekdays and weekends. The results demonstrate that the concentrations of SO2 and NO2 on weekends is higher than weekdays. Besides, the concentrations for both weekdays and weekends have exceeded the standard limit set by the Malaysian Ambient Air Quality Guideline (MAAQG).


2020 ◽  
Vol 15 (3) ◽  
pp. 560-573
Author(s):  
Sugandh Kumar Choudhary

Air pollution is the fifth leading risk factor behind theworld – wide mortality. Ever growing population size feeding industrial activity through demand channel, vehicular pollution accompanied by rapid urbanization and burning of fossil fuels pose a serious threat to clean air. Some major air pollutants under study in the city of Prayagraj are Nitrogen Dioxide (NO2), Particulate Matter (PM10) and Sulphur Dioxide (SO2). Pollution profile of the city localityi.e. Rambagh, Johnstonganj, Alopibagh, Crossing Mahalakshmi talkies and Bharat Yantra Nigam are studied. PM10 level of exposure is serious in Crossing Mahalakshmi talkiesand Alopibagh area as exposure to very high level in the range of 250 – 400 µg/m3 occurs for the longest duration of time. Alopibagh, Johnstonganj and Rambagh shows critical level of Nitrogen Dioxide indicating higher vehicular movement in these areas. Trend wise, SO2 component has spiked above 12 µg/m3 at Rambagh, Johnstonganj and Alopibagh during the onset of winters season in 2016. Similar phenomenon was seen at Bharat Yantra Nigam and Crossing Mahalakshmi talkies during winter season of 2019. Arrival of monsoon tend to lower pollutants content in the outdoor ambient air quality. Overall air quality is in critical zone at Alopibagh for 45 per cent of the time period followed by Johnstonganj. Crossing Mahalakshmi talkies and Bharat Yantra Nigamshows critical air quality for more than 60 per cent of the time period which calls for urgent action to prevent them from entering the critical zone. Overall air quality of Prayagraj is range bound with air pollutants improve during the monsoon season. However, improvement in air quality has reduced in the last two years as fall in air pollutants is less in 2018 and 2019 monsoon compared to previous two years. The findings of the paper will help the administration, municipal corporation and various stake holders of the city to take targeted measures locality wise towards pollution control depending upon pollutants concentration and exposure area – wise. It will also raise public awareness about pollutant levels in their area.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Eka Wardhani

ABSTRAKPenelitian ini bekerja sama dengan Dinas Lingkungan Hidup (DLH) Kota Cimahi dalam rangka pengendalian pencemaran udara di kota tersebut mengingat perkembangan Kota Cimahi yang terus mengalami perkembangan. Analisis kualitas udara dilakukan di laboratorium PT. Unilab Perdana yang telah mendapatkan akreditasi oleh KAN No. LP-195-IDN. Pengambilan sampel dilakukan pada tanggal 15 September 2017 sedangkan untuk analisis di laboratorium di lakukan pada tanggal 15 sampai dengan 27 September 2017. Parameter yang dianalisis yaitu SO2, CO2, NO2, O3, HC, PM10, PM2,5, Pb, NH3, dan H2S. Pengambilan sampel kualitas udara dilakukan secara langsung di lapangan di 8 titik. Berdasarkan hasil penelitian di Kota Cimahi kualitas udara masih tergolong baik hal tersebut terlibat bahwa parameter kualitas udara ambien masih memenuhi baku mutu sesuai PP 41/1999 tentang PPU. Upaya pengendalian pencemaran udara harus terus dilaksanakan mengingat angka penyakit ISPA di kota ini yang menempati posisi tertinggi dibandingkan dengan penyakit lainnya.ABSTRACTThis research is in collaboration with the Environmental Agency (DLH) of Cimahi City in order to control air pollution in the city due to the development of Cimahi City. Air quality analysis was carried out in the laboratory of PT. Unilab Perdana which has been accredited by KAN No. LP-195-IDN. Sampling was carried out on 15 September 2017 while the analysis in the laboratory was conducted on 15 to 27 September 2017. The parameters analyzed were SO2, CO2, NO2, O3, HC, PM10, PM2,5, Pb, NH3, and H2S . Air quality sampling is carried out directly in the field at 8 points. Based on the results of research in Cimahi City, air quality is still relatively good, it is involved that ambient air quality parameters still meet the quality standards according to PP 41/1999 concerning PPU. Air pollution control must continue to be carried out considering the number of lung infection diseases in this city which occupies the highest position compared to other diseases.


Author(s):  
Worku Tefera ◽  
Abera Kumie ◽  
Kiros Berhane ◽  
Frank Gilliland ◽  
Alexandra Lai ◽  
...  

Ambient air pollution is a growing public health concern in major African cities, including Addis Ababa (Ethiopia), where little information is available on fine particulate matter (PM2.5, with aerodynamic diameter <2.5 µm) pollution. This paper aims to characterize annual PM2.5, including bulk composition and seasonal patterns, in Addis Ababa. We collected 24-h PM2.5 samples in the central city every 6 days from November 2015 to November 2016. The mean (±SD) daily PM2.5 concentration was 53.8 (±25.0) µg/m3, with 90% of sampled days exceeding the World Health Organization’s guidelines. Principal components were organic matter (OM, 44.5%), elemental carbon (EC, 25.4%), soil dust (13.5%), and SNA (sulfate, nitrate, and ammonium ions, 8.2%). Higher PM2.5 concentrations were observed during the heavy rain season, while crustal dust concentrations ranged from 2.9 to 37.6%, with higher levels during dry months. Meteorological variables, vehicle emissions, biomass fuels, unpaved roads, and construction activity contribute to poor air quality. Compared to the Air Quality Index (AQI), 31% and 36% of observed days were unhealthy for everyone and unhealthy for sensitive groups, respectively. We recommend adopting effective prevention strategies and pursuing research on vehicle emissions, biomass burning, and dust control to curb air pollution in the city.


2013 ◽  
Vol 5 (2) ◽  
pp. 497-502
Author(s):  
D. R. Khanna ◽  
N. S. Nigam ◽  
R. Bhutiani

An ambient air quality study was undertaken in Bareilly city, U.P., India during the year 2010 and 2011. The seasonal air quality data was obtained from ten monitoring sites across the city considering sampling site of Cantt as control site. The maximum (713.06±55.64 µg/m3) suspended particulate matter (SPM), sulphur dioxide (SO2) (80.08±4.77 µg/m3) and nitrogen oxides (NOx) (64.98±3.53 µg/m3) level was found at Choupla during the winter 2011. Among the annual mean values of air pollutants were analyzed, SPM level was found to be above the National Ambient Air Quality Standards (NAAQS) (200 µg/m3) at all the polluted sites. SO2 and NOx levels were below the threshold limits (80 µg/m3) as per NAAQS. The ambient air quality was correlated with the traffic density in the city. The pollution level was observed to be positively correlated with traffic density which is the major source of air pollution in the city. The ambient air quality at different monitoring sites was categorized into different pollution level on the basis of Oak ridge air quality index (ORAQI). Light to moderate air pollution conditions were present at different sites. Sampling site of Choupla (SVII) observe maximum ORAQI of 64.48 and 70.81 and falls under category of moderate pollution.


2021 ◽  
Vol 9 (12) ◽  
pp. 453-461
Author(s):  
Mirnes Durakovic ◽  
◽  
Azrudin Husika ◽  
Halim Prcanovic ◽  
Sanela Beganovic ◽  
...  

According to the World Health Organization (WHO), air pollution is the largest single environmental risk to public health. According to the latest estimate of this organization, 9 out of 10 people on the planet breathe polluted air. The development of industry in the relatively small Zenica valley reflected on air quality in the city of Zenica. The problem of high air pollution due to emissions of pollutants from industrial sources, traffic, and individual furnaces, burning of environmentally unsuitable fuels containing high sulfur and ash content has been present in the City of Zenica for a long time. In addition, the low wind speed during the year, which ranges up to 1.5 m/s, with unfavorable temperature inversions, causes the concentrations of pollutants in the air to reach alarmingly high values in a short period. In the wider area of the City of Zenica, air quality has been monitored since 1978 in the network of stationary stations. The paper presents results of air quality monitoring which are analyzed at the Institute Kemal Kapetanovic in Zenica for the sampling period from 01.01.2019. to 31.12.2020. years. Air quality monitoring included sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter (PM10) at three locations in the wider area of the city of Zenica. In the wider area of the City of Zenica, air quality has been monitored since 1978 in the network of stationary stations. The paper presents the processed results of air quality monitoring which are analyzed at the Institute Kemal Kapetanovic in Zenica for the sampling period from 01.01.2019 to 31.12.2020. The measured concentrations of pollutants in the ambient air indicate that during the heating season, i.e. the winter months, the air quality in the urban and suburban areas of the city of Zenica is very poor. The data show that the highest hourly concentration of sulfur dioxide was recorded in December at the measuring station AMS Tetovo in the amount of 1100.59 µg/m3, which is located in the settlement next to the metallurgical facilities of the industrial zone Zenica.


2016 ◽  
Vol 73 (4) ◽  
pp. 326-336 ◽  
Author(s):  
Amelija Djordjevic ◽  
Goran Ristic ◽  
Nenad Zivkovic ◽  
Branimir Todorovic ◽  
Sladjan Hristov ◽  
...  

Background/Aim. Analysis of air quality in Serbia indicates that the city of Nis belongs to a group of cities characterized by the third category of air quality (excessive air pollution). The aim of the study was to analyze the degree of causality between ambient air quality affected by particulate matter of 10 ?m (PM10) and carbon monoxide (CO) and the incidence of respiratory diseases in preschool children in the city of Nis. Methods. We quantified the influence of higher PM10 concentrations and carbon monoxide comprising motor vehicle exhausts in the city of Nis on the occurrence of unwanted health effects in preschool children by means of the hazard quotient (HQ), individual health risk (Ri), and the probability of cancer (ICR). The methodology used was according to the US Environmental Protection Agency (EPA), and it included basic scientific statistical methods, compilation methods, and the relevant mathematical methods for assessing air pollution health risk, based on the use of attribute equations. Results. Measurement of ambient air pollutant concentrations in the analyzed territory for the entire monitoring duration revealed that PM10 concentrations were significantly above the allowed limits during 80% of the days. The maximum measured PM10 concentration was 191.6 ?g/m3, and carbon monoxide 5.415 mg/m3. The incidence of respiratory diseases in the experimental group, with a prominent impact of polluted air was 57.17%, whereas the incidence in the control group was considerably lower, 41.10 %. There were also significant differences in the distribution of certain respiratory diseases. Conclusion. In order to perform good causal analysis of air quality and health risk, it is very important to establish and develop a system for long-term monitoring, control, assessment, and prediction of air pollution. We identified the suspended PM10 and CO as ambient air pollutants causing negative health effects in the exposed preschool children population.


2021 ◽  
Author(s):  
K C Gouda ◽  
Priya Singh ◽  
P Nikhilasuma ◽  
Mahendra Benke ◽  
Reshama Kumari ◽  
...  

Abstract The Coronavirus disease 2019 (COVID-19), which became a global pandemic by March 2020 (WHO, 2020), forced almost all countries over the world to impose the lockdown as a measure of social distancing to control the spread of infection. India also strictly implemented a countrywide lockdown, starting from 24th March onwards. This measure resulted in the reduction of the sources of air pollution in general; industrial, commercial, and vehicular pollution in particular, with visible improvement in Ambient Air Quality. In this study, the impact of COVID-19 lockdown on the ambient concentration of air pollutants over the city of Bengaluru (India) is assessed using Continuous Ambient Air Quality Measurement (CAAQM) data from 10 monitoring stations spread across the city. The data was obtained from Central Pollution Control Board (CPCB) and Karnataka State Pollution Control Board (KSPCB). The analysis of the relative changes in the ambient concentration of six major air pollutants (NO, NO2, NOX, PM2.5, O3, and SO2) been carried out for two periods; March-May 2020 (COVID-19 lockdown) and the corresponding period of 2019 which was Non-COVID. The analysis revealed significant reduction in the concentration of ambient air pollutants at both daily and monthly intervals. This can be attributed to the reduction in sources of emission; vehicular traffic, industrial, and other activities. The average reduction in the concentration of NO, NO2, NOX, PM2.5, and O3 between 1st March to 12th May 2020 was found to be 63%, 48%, 48%, 18%, and 23% respectively when compared to the same period in 2019. Similarly, the comparative analysis of pollutant concentrations between pre-lockdown (March 01- March 23) and lockdown (Mar 24-May 12) period, shown a huge reduction in the ambient concentration of air pollutants; 47.3% (NO), 49% (NO2), 49% (NOX), 10% (SO2), 37.7% (PM2.5), and 15.6% (O3), resulting in improved air quality over Bangalore during the COVID-19 lockdown period. It is shown that the strict lockdown resulted in a significant reduction in the pollution levels. Such lockdowns may be useful as emergency intervention strategies to control air pollution in megacities when ambient air quality deteriorates dangerously.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 678
Author(s):  
Adeeba Al-Hurban ◽  
Sawsan Khader ◽  
Ahmad Alsaber ◽  
Jiazhu Pan

This study aimed to examine the trend of ambient air pollution (i.e., ozone (O3), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), benzene (C6H6) and particulate matter with an aerodynamic diameter smaller than 10 microns (PM10), and non-methane hydrocarbons (NMHCs) at 10 monitoring stations located in the main residential and industrial areas in the State of Kuwait over 6 years (2012–2017). We found that the SO2 level in industrial areas (0.065 ppm) exceeded the allowable range of SO2 in residential areas (0.030 ppm). Air pollution variables were defined by the Environmental Public Authority of Kuwait (K-EPA). In this study, integrated statistical analysis was performed to compare an established air pollution database to Kuwait Ambient Air Quality Guidelines and to determine the association between pollutants and meteorological factors. All pollutants were positively correlated, with the exception of most pollutants and PM10 and O3. Meteorological factors, i.e., the ambient temperature, wind speed and humidity, were also significantly associated with the above pollutants. Spatial distribution mapping indicated that the PM10 level remained high during the southwest monsoon (the hot and dry season), while the CO level was high during the northeast monsoon (the wet season). The NO2 and O3 levels were high during the first intermonsoon season.


Sign in / Sign up

Export Citation Format

Share Document