scholarly journals A review on Assessment of Air Pollution due to Vehicular Emission in Traffic Area

Author(s):  
Aneri A. Desai

In Indian metropolitan cities, the extensive growth of the motor vehicles has resulted in the deterioration of environmental quality and human health. The concentrations of pollutants at major traffic areas are exceeding the permissible limits. Public are facing severe respiratory diseases and other deadly cardio-vascular diseases In India. Immediate needs for vehicular air pollution monitoring and control strategies for urban cities are necessary. Vehicular emission is the main source of deteriorating the ambient air quality of major Indian cities due to rapid urbanization. Total vehicular population is increased to 15 Lacks as per recorded data of Regional Transport Organization (RTO) till 2014-2015. This study is focused on the assessment of major air pollution parameters responsible for the air pollution due to vehicular emission. The major air pollutants responsible for air pollution due to vehicular emissions are PM10, PM2.5, Sox, Nox, HC, CO2 and CO and Other meterological parameters like Ambient temperature, Humidity, Wind direction and Wind Speed. Sampling and analysis of parameters is carried out according to National Ambient Air Quality Standards Guidelines (NAAQS) (2009) and IS 5128.

2019 ◽  
Vol 109 ◽  
pp. 277-282 ◽  
Author(s):  
Corbett Grainger ◽  
Andrew Schreiber

In the United States, ambient air quality is regulated through National Ambient Air Quality standards (NAAQS). Enforcement of these standards is delegated to state and sub-state regulators who are also tasked with designing their own monitoring networks for ambient pollution. Past work has found evidence consistent with strategic behavior: local regulators strategically avoid pollution hotspots when siting monitors. This paper assesses whether income and race have historically played a role in monitor siting decisions.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 290
Author(s):  
Akvilė Feiferytė Skirienė ◽  
Žaneta Stasiškienė

The rapid spread of the coronavirus (COVID-19) pandemic affected the economy, trade, transport, health care, social services, and other sectors. To control the rapid dispersion of the virus, most countries imposed national lockdowns and social distancing policies. This led to reduced industrial, commercial, and human activities, followed by lower air pollution emissions, which caused air quality improvement. Air pollution monitoring data from the European Environment Agency (EEA) datasets were used to investigate how lockdown policies affected air quality changes in the period before and during the COVID-19 lockdown, comparing to the same periods in 2018 and 2019, along with an assessment of the Index of Production variation impact to air pollution changes during the pandemic in 2020. Analysis results show that industrial and mobility activities were lower in the period of the lockdown along with the reduced selected pollutant NO2, PM2.5, PM10 emissions by approximately 20–40% in 2020.


Author(s):  
Jiban Jyoti Das

Industrialization is an important aspect of a growing economy. However, rapid industrialization has caused many serious impacts on the environment. One such impact is the deteriorating air quality, especially around industries. It is said that afforestation is the best and simplest way for improving the air quality. Also, trees and plants have been increasingly used as filters for dust particles around the home, traffic roads, etc. In scientific studies, it has also been found that trees and plant leaves can be used to assess the ambient air quality by an index called the Air pollution tolerance index. A literature search has been done on the scientific database like Sciencedirect and Researchgate to review the existing knowledge of Air pollution tolerance index and to find the tolerant and sensitive species based on it so that these species can be selectively planted to assess the ambient air quality and also to develop a better green belt around refineries and industries in Assam. The study has reviewed the linkage of the impact of air pollution on leaves of plants and trees through scientific evidence. Through such scientific reviews, the most tolerant species of trees and plants were chosen with the condition that it can grow under the climatic condition of Assam. The recommendation and suggestions of tolerant tree and plant species can be used for specific species plantations for developing green belts around refineries and industries in Assam. The recommendation of sensitive species can be used for monitoring ambient air quality with reference to other standard procedures. KEYWORDS: Air pollution tolerance index, Industries, Air- pollution, Green belt


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Gyu-Sik Kim ◽  
Youn-Suk Son ◽  
Jai-Hyo Lee ◽  
In-Won Kim ◽  
Jo-Chun Kim ◽  
...  

The metropolitan city of Seoul uses more energy than any other area in South Korea due to its high population density. It also has high emissions of air pollutants. Since an individual usually spends most of his/her working hours indoors, the ambient air quality refers to indoor air quality. In particular, PM10concentration in the underground areas should be monitored to preserve the health of commuters in the subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation measure several air pollutants regularly. In this study, the accuracy of an instrument for PM measurement using the light scattering method was improved with the help of a linear regression analysis technique to continuously measure thePM10concentrations in subway stations. In addition, an air quality monitoring system based on environmental sensors was implemented to display and record the data of PM10, CO2, temperature, and humidity. Through experimental studies, we found that ventilation fans could improve air quality and decrease PM10concentrations in the tunnels effectively by increasing the air flow rate.


2019 ◽  
Vol 65 ◽  
pp. 52-71 ◽  
Author(s):  
Ranran Li ◽  
Yuqi Dong ◽  
Zhijie Zhu ◽  
Chen Li ◽  
Hufang Yang

2021 ◽  
pp. 94-106
Author(s):  
Porush Kumar ◽  
Kuldeep ◽  
Nilima Gautam

Air pollution is a severe issue of concern worldwide due to its most significant environmental risk to human health today. All substances that appear in excessive amounts in the environment, such as PM10, NO2, or SO2, may be associated with severe health problems. Anthropogenic sources of these pollutants are mainly responsible for the deterioration of urban air quality. These sources include stationary point sources, mobile sources, waste disposal landfills, open burning, and similar others. Due to these pollutants, people are at increased risk of various serious diseases like breathing problems and heart disease, and the death rate due to these diseases can also increase. Hence, air quality monitoring is essential in urban areas to control and regulate the emission of these pollutants to reduce the health impacts on human beings. Udaipur has been selected for the assessment of air quality with monitored air quality data. Air quality monitoring stations in Udaipur city are operated by the CPCB (Central Pollution Control Board) and RSPCB (Rajasthan State Pollution Control Board). The purpose of this study is to characterize the level of urban air pollution through the measurement of PM10, NO2, or SO2 in Udaipur city, Rajasthan (India). Four sampling locations were selected for Udaipur city to assess the effect of urban air pollution and ambient air quality, and it was monitored for a year from 1st January 2019 to 31st December 2019. The air quality index has been calculated with measured values of PM10, NO2, and SO2. The concentration of PM10 is at a critical level of pollution and primarily responsible for bad air quality and high air quality Index in Udaipur city.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 214 ◽  
Author(s):  
Iva Hůnová

Based on an analysis of related core papers and reports, this review presents a historical perspective on ambient air pollution and ambient air quality development in the modern-day Czech Republic (CR) over the past seven decades, i.e., from the 1950s to the present. It offers insights into major air pollution problems, reveals the main hot spots and problematic regions and indicates the principal air pollutants in the CR. Air pollution is not presented as a stand-alone problem, but in the wider context of air pollution impacts both on human health and the environment in the CR. The review is arranged into three main parts: (1) the time period until the Velvet Revolution of 1989, (2) the transition period of the 1990s and (3) the modern period after 2000. Obviously, a major improvement in ambient air quality has been achieved since the 1970s and 1980s, when air pollution in the former Czechoslovakia culminated. Nevertheless, new challenges including fine aerosol, benzo[a]pyrene and ground-level ozone, of which the limit values are still vastly exceeded, have emerged. Furthermore, in spite of a significant reduction in overall emissions, the atmospheric deposition of nitrogen, in particular, remains high in some regions.


Author(s):  
Sirajuddin M Horaginamani ◽  
M Ravichandran

Though water and land pollution is very dangerous, air pollution has its own peculiarities, due to its transboundary dispersion of pollutants over the entire world. In any well planned urban set up, industrial pollution takes a back seat and vehicular emissions take precedence as the major cause of urban air pollution. Air pollution is one of the serious problems faced by the people globally, especially in urban areas of developing countries like India. All these in turn lead to an increase in the air pollution levels and have adverse effects on the health of people and plants. Western countries have conducted several studies in this area, but there are only a few studies in developing countries like India. A study on ambient air quality in Tiruchirappalli urban area and its possible effects selected plants and human health has been undertaken, which may be helpful to bring out possible control measures. Keywords: ambient air quality; respiratory disorders; APTI; human health DOI: 10.3126/kuset.v6i2.4007Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.13-19


Sign in / Sign up

Export Citation Format

Share Document