scholarly journals An In-Situ Measurement of the Progress of Vulcanization by Using a Pressure Transducer.

1994 ◽  
Vol 51 (8) ◽  
pp. 547-551
Author(s):  
Tetsuo MORI ◽  
Toyohiko GONDOH ◽  
Michiharu TOH ◽  
Daizaburou OKAI
Author(s):  
Nigel Johnston

An existing ISO standard frequency-domain method for measurement of speed of sound in a hydraulic pipeline is enhanced and extended in this article to include in situ measurement of pressure transducer calibration factors. Transducer mounting stresses are shown to cause variations in the calibration factors, and the proposed method can be used to eliminate these uncertainties, consequently improving the accuracy of the speed of sound. 95% confidence ranges in the speed of sound of less than ±0.1% have been achieved, and such high precision cannot be achieved by other practical methods. The method can also been extended to estimate viscosity and mean flow velocity, but accuracy is less good. Novel time-domain versions of the method are introduced. These may be valuable for real-time monitoring, and changes in speed of sound or calibration factor can be tracked with minimal delay. Some examples showing the effect of sudden aeration are presented; a sudden drop in speed of sound is apparent.


2003 ◽  
Vol 2 (4) ◽  
pp. 589
Author(s):  
Douglas R. Cobos ◽  
John M. Baker

2015 ◽  
Vol 84 (8) ◽  
pp. 567-572
Author(s):  
Tadafumi HASHIMOTO ◽  
Masahito MOCHIZUKI

Author(s):  
Philipp Peter Breese ◽  
Tobias Hauser ◽  
Daniel Regulin ◽  
Stefan Seebauer ◽  
Christian Rupprecht

AbstractThe powder mass flow rate is one of the main parameters regarding the geometrical precision of built components in the additive manufacturing process of laser metal deposition. However, its accuracy, constancy, and repeatability over the course of the running process is not given. Reasons among others are the performance of the powder conveyors, the complex nature of the powder behavior, and the resulting issues with existing closed-loop control approaches. Additionally, a direct in situ measurement of the powder mass flow rate is only possible with intrusive methods. This publication introduces a novel approach to measure the current powder mass flow rate at a frequency of 125 Hz. The volumetric powder flow evaluation given by a simple optical sensor concept was transferred to a mass flow rate through mathematical dependencies. They were found experimentally for a nickel-based powder (Inconel 625) and are valid for a wide range of mass flow rates. With this, the dynamic behavior of a vibration powder feeder was investigated and a memory effect dependent on previous powder feeder speeds was discovered. Next, a closed-loop control with the received sensor signal was implemented. The concept as a whole gives a repeatable and accurate powder mass flow rate while being universally retrofittable and applicable. In a final step, the improved dynamic and steady performance of the powder mass flow rate with closed-loop control was validated. It showed a reduction of mean relative errors for step responses of up to 81% compared to the uncontrolled cases.


Sign in / Sign up

Export Citation Format

Share Document