scholarly journals Novel Tool Design Method for Orbiting EDM

2010 ◽  
Vol 4 (7) ◽  
pp. 1261-1271 ◽  
Author(s):  
Tutik SRIANI ◽  
Hideki AOYAMA
Keyword(s):  
2013 ◽  
Vol 70 (9-12) ◽  
pp. 1915-1921 ◽  
Author(s):  
Yingchun Liang ◽  
Wanqun Chen ◽  
Yazhou Sun ◽  
Xichun Luo ◽  
Lihua Lu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Wang ◽  
Jingcai Li ◽  
Lin Han

Tool design is one of the key factors that restrict the development of gear skiving technology since the design principle does not correspond to the cutting principle. The existing skiving tool cannot achieve ideal machining accuracy and reasonable cutting angles. In view of this, some research has been done in this paper. Firstly, the skiving principle is investigated essentially according to the skiving motions. Then, the principle of tool design is analyzed based on the theory of conjugate surface, and a new tool design method is proposed to match the skiving principle. For this, all the skiving patterns for various kinds of workpieces are enumerated and summarized to abstract a normalized skiving model. Based on this, the mathematical model of the conjugate surface is then derived to lay the foundation for tool design. Then, the design methods of cutting edge, rake face, and flank face are proposed. An example is presented at last, and the cutting simulation is conducted. The result proves that the proposed methods are correct and valid. The theoretical research in this paper could promote the improvement of skiving tools.


2021 ◽  
Vol 9 (3) ◽  
pp. 296
Author(s):  
Ji-Hong Li ◽  
Mun-Jik Lee ◽  
Hyungjoo Kang ◽  
Min-Gyu Kim ◽  
Gun Rae Cho

ROV trencher is a kind of ROV which trenches the sea floor using a specifically designed tool and buries the subsea cables and pipelines. According to the soil conditions, this trenching method can have two different types, one is mechanical cutting and the other one is water jetting. In this paper, we present a water jet tool design method for a 2500 m depth-rated ROV trencher. A series of CFD simulations and laboratory tests with one nozzle, and a ground test using 1:6 scale jetting arm model were carried out to derive and demonstrate the jetting tool design parameters. In October 2018, the constructed ROV trencher was put into the sea trial in the East Sea of Korea to evaluate its final performances. In addition, in December 2019, the trencher was applied in a construction site to bury subsea water pipelines near the Yogji Island in the Korea. Through these two field tests and operation, the trencher was demonstrated for both its operational capability and trenching performance. The main contribution of this paper is that it presents the entire design procedures of water jet tools, including CFD simulations, laboratory tests, field test with 1:6 scaled jetting tool, and the final prototype tool design. These consecutive procedures are carried out in order for us to set up sort of relationship between jetting angle, trench depth, trench speed, and jetting power, from which we can predict and evaluate the trenching performance of the prototype jetting tool.


2005 ◽  
Author(s):  
Michael Szczepkowski ◽  
Kelly Neville ◽  
Ed Popp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document