(1-07) Prediction of Ignition Processes in Fuel Sprays Including Turbulent Mixing and Reduced Chemical Reaction Models((DE-3)Diesel Engine Combustion 3-Modeling)

Author(s):  
Takuji ISHIYAMA ◽  
Masahiro SHIOJI ◽  
Tadayoshi IHARA
Author(s):  
H. C. Grigg ◽  
M. H. Syed

Two simple models for the rate of heat release in diesel engines are described. The factors taken into account in the models are rate of entrainment of air into the fuel sprays, the rate of turbulent mixing of fuel and air within the spray, and the chemical kinetics of burning. The models differ in their treatment of the rate of air entrainment. Comparisons are made with experimental results for a diesel engine running at two speeds and a variety of turbocharging ratios. The overall agreement with experiment in respect of shape of rate of heat release diagram is good, with the exception of the naturally aspirated cases where the rate of air entrainment is too low.


1977 ◽  
Vol 16 (1) ◽  
pp. 321-336 ◽  
Author(s):  
G. Greeves ◽  
I.M. Khan ◽  
G. Onion

2021 ◽  
pp. 106964
Author(s):  
Hongbo Guo ◽  
Xiongbin Jia ◽  
Ningbo Zhao ◽  
Shuying Li ◽  
Hongtao Zheng ◽  
...  

2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


Sign in / Sign up

Export Citation Format

Share Document