scholarly journals Measurements of Horizontal Air-solid Two-phase Flow Using an Optical Fiber Probe : Particle Velocity and Concentration

1986 ◽  
Vol 29 (249) ◽  
pp. 802-809 ◽  
Author(s):  
Yoshinobu MORIKAWA ◽  
Yutaka TSUJI ◽  
Toshitsugu TANAKA
2011 ◽  
Vol 361-363 ◽  
pp. 671-675 ◽  
Author(s):  
Feng Yun Chen ◽  
Wei Min Liu

A way of measuring the average cross-sectional void fraction for vertically rising oil pipes by using closing valves quickly and optical fiber probe has been researched. Experiments were performed in oil-gas two-phase flow and the range of the average void fraction is 0.1~0.5. The relationship between average cross-sectional void fraction of a oil-gas two-phase flow and pipe’s center void fraction in vertically rising oil pipes, for different pipe diameters and varying oil flow, is obtained. An exponential model of average void fraction is also obtained with reference to Bankoff’s[1] variable density model. It is found that local void fraction reduces from center in radial direction and the local void fraction maximum value appears in the pipe’s center.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1420
Author(s):  
Shuaifei Cui ◽  
Junfeng Liu ◽  
Kui Li ◽  
Qinze Li

To solve the problem that traditional single-probe instruments cannot accurately measure the gas and water holdup, the domestic design of the array holdup measuring instrument Array of Optical and Resistance Tool (AORT), composed of five sets of optical fiber probes and five sets of resistance probes, is carried out in both gas–water and oil–water. Simulated measurement experiments were conducted under different water cut in phase flow. Through the analysis of the experimental data, the response relationship between the optical fiber probe and the resistance probe of the AORT instrument in different fluids was obtained. Then, the data under different conditions of fluid, flowrate and water cut in the experiment were compared by drawing. Interpolation algorithm was used to perform two-maintenance holdup imaging, and finally the holdup image was compared with the pictures of the flow in the pipe recorded during the experiment. The results show that the resistance probe has a better response under low water cut conditions, and the optical fiber probe has a better response under high gas cut conditions, which is consistent with the theoretical analysis. The imaging diagram and the flow pattern in the pipe during the experiment are in good agreement. It can be seen that the accuracy of the holdup measured by the AORT instrument under the test conditions is verified, and can provide technical support for further carrying out the measurement and interpretation of the holdup in future, as well as the improvement of the instrument and on-site testing.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7338
Author(s):  
Yu Ma ◽  
Yangrui Zhang ◽  
Song Li ◽  
Weimin Sun ◽  
Elfed Lewis

The use of optical fiber probe in two-phase flow measurements is very frequently encountered, especially in the applications of chemical engineering and petroleum industries. In this work, the influence of bubble piercing signals caused by bubble deformation is studied experimentally using a laboratory-prepared wedge-shaped fiber probe in a lab-scale gas–liquid flow generator. A three-dimensional simulation model is established to study the influence of bubble deformation on the piercing signals. A theoretical analysis of the characteristics of the pre-signal influenced by the bubble deformations is undertaken for a wide range of different modeled bubble shapes. Combining the experimental and simulation results, a promising analytical method to estimate the bubble shapes by analyzing the characteristics of pre-signals is proposed. The results of this investigation demonstrate that it is possible to estimate the bubble shapes before the fiber probe contacts the bubble surface. The method developed in this investigation is therefore highly promising for reducing errors caused by deformation during the probe piercing process.


Author(s):  
C. R. Zamarreño ◽  
C. Martelli ◽  
V. H. V. Baroncini ◽  
E. N. dos Santos ◽  
M. J. da Silva ◽  
...  

1980 ◽  
Vol 13 (5) ◽  
pp. 343-349 ◽  
Author(s):  
HIROYASU OHASHI ◽  
TAKUO SUGAWARA ◽  
KEN-ICHI KIKUCHI ◽  
MICHIHITO ISE

Author(s):  
Yuki Mizushima ◽  
Takayuki Saito

An optical fiber probe has been frequently employed to measure bubble diameters, velocities, and local void fractions simultaneously in gas-liquid two-phase systems. For the application of the probe to tiny-bubble measurement, one of the authors already developed a Single-Tip Optical fiber Probe (STOP). The purpose of this study is to rapidly improve the measurement accuracy of the S-TOP. A bubble chord length pierced by the S-TOP is obtained. Consequently, the chord length depends on the pierced position. The chord lengths measured by the S-TOP include an error owing to the random positions pierced by the S-TOP; i.e. the measured chord length becomes shorter than the bubble minor axis, with a shift of the contact position towards the outer edge of the bubble. The S-TOP axis crosses the direction of the bubble motion at a random angle. This also causes a miscalculation of the chord lengths. In order to correct these errors in the S-TOP measurement, we need to detect the contact position and the intersection angles. To realize this, using a pre-signal is quite effective. The pre-signal is generated clearly and intensively, only when the S-TOP sensing tip is ground in a wedge shape and the tip touches vertically the center region of the bubble frontal surface. The pre-signal becomes weak and indistinct under the other contact conditions. Making the smart use of these phenomena, we are able to solve the above defects of the S-TOP. First, the relationship between the intensity of the pre-signal and the pierced positions/angles is systematically quantified. Second, a signal processing to detect the pierced positions/angles, based on the relationship, is established. Third, we discuss a mechanism of the pre-signal. We determine the most suitable S-TOP size, tip diameter and wedge-angle, for the most accurate measurement. Finally, we demonstrate the effectiveness of our newly proposed method.


2021 ◽  
Vol 60 (6) ◽  
pp. 1660
Author(s):  
Yu Ma ◽  
Mingyang Lv ◽  
Yangrui Zhang ◽  
Xu Zhang ◽  
Song Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document