scholarly journals Application of Unified Predictive Control (UPC) for an Electro-Hydraulic Servo System

Author(s):  
Eduardo Carlos Jeronymo ◽  
Takayoshi Muto
2017 ◽  
Vol 24 (18) ◽  
pp. 4145-4159 ◽  
Author(s):  
Hai-Bo Yuan ◽  
Hong-Cheol Na ◽  
Young-Bae Kim

This paper examined system identification using grey-box model estimation and position-tracking control for an electro-hydraulic servo system (EHSS) using hybrid controller composed of proportional-integral control (PIC) and model predictive control (MPC). The nonlinear EHSS model is represented by differential equations. We identify model parameters and verify their accuracy against experimental data in MATLAB to evaluate the validity of this mathematical model. To guarantee improved performance of EHSS and precision of cylinder position, we propose a hybrid controller composed of PIC and MPC. The controller is designed using the Control Design and Simulation module in the Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW). A LabVIEW-based experimental rig is developed to apply the proposed controller in real time. Then, the validity and performance superiority of the hybrid controller were confirmed by comparing them with the MPC and PIC results. Results of real-life experiments show improved robustness and dynamic and static properties of EHSS.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987566
Author(s):  
Shi-jie Su ◽  
Yuan-yuan Zhu ◽  
Cun-jun Li ◽  
Wen-xian Tang ◽  
Hai-rong Wang

To improve the dynamic response performance of a high-flow electro-hydraulic servo system, scholars have conducted considerable research on the synchronous and time-sharing controls of multiple valves. However, most scholars have used offline optimization to improve control performance. Thus, control performance cannot be dynamically adjusted or optimized. To repeatedly optimize the performance of multiple valves online, this study proposes a method for connecting a high-flow proportional valve in parallel with a low-flow servo valve. Moreover, this study proposes an algorithm in which a proportional–integral–derivative system and multivariable predictive control system are used as an inner loop and outer loop, respectively. The simulation and experimental results revealed that dual-valve parallel control could effectively improve the control accuracy and dynamic response performance of an electro-hydraulic servo system and that the proportional-integral-derivative–multivariable predictive control controller could further dynamically improve the control accuracy.


Author(s):  
Mohamed El-Sayed M Essa ◽  
Magdy AS Aboelela ◽  
MA Moustafa Hassan ◽  
SM Abdrabbo

This article discusses a system identification based on a black-box state-space model for an experimental electro-hydraulic servo system. Furthermore, it presents force-tracking control for the electro-hydraulic servo system based on model predictive control. The parameters of model predictive controls have been tuned by cuckoo search algorithm as well as genetic algorithm. The realization of model predictive controls depends on using a data acquisition card (NI-6014) and Simulink/MATLAB as the core of the electro-hydraulic servo system control system. In this research, the combination of model predictive control tuned by cuckoo search algorithm and genetic algorithm has been introduced in the form of switching model predictive controls. This combination collects the advantages of two model predictive controls in one model predictive control by switching model predictive controls. The simulation and experimental results display that the suggested switching of model predictive controls introduces a good tracking performance in terms of settling time, rise time, and system overshoots as compared to the two separated model predictive controls. In addition, the experimental evaluation has shown that the proposed switching model predictive controls achieved a stable and robust control system even facing to a different reference command signals (step, multistep, and sinusoidal signals). Moreover, its behavior is more robust for system parameters perturbation and small or large perturbation of disturbances in the working environment. It also achieves the necessitated physical limits of the actuator. As a general conclusion and a deep study of electro-hydraulic servo system, one can conclude that the switching strategy between model predictive control tuned by cuckoo search algorithm and by genetic algorithm has the priority of applying it on the field of electro-hydraulic servo system. The proposed new strategy (switching of model predictive control) is promising in experimental applications.


2013 ◽  
Vol 753-755 ◽  
pp. 2674-2678
Author(s):  
Kun Yang ◽  
Cai Jun Liu ◽  
Shu Min Liu

Based on the situation that the hydraulic position servo system is easily influenced by the external interference and the parameters of which are different with time-varying, the fuzzy control can soften the buffeting and the sliding algorithm has no the same problems as the hydraulic position servo system, a brandly-new fuzzy sliding control algorithm is designed. In the simulation process, within the parameters of simulated time-varying and outside strong interference, the results show that the hydraulic servo system based on fuzzy sliding mode control algorithm has a greater resistance to internal and external interference and time-varying parameters.


2000 ◽  
Author(s):  
Xuanyin Wang

Abstract This paper researches on the hydraulic servo system by using ordinary on-off valves. The mathematic model of an asymmetric hydraulic cylinder servo control system is built, and its characteristic is analysed here. To reduce the static and dynamic characteristic differences between forward and reverse motion of asymmetric cylinder, and improve system’s performance, a self-tuning linear quadratic gaussian optimum controller (SLQG) is designed successful. In the end, an asymmetric hydraulic cylinder servo system of paint robot is researched. The result shows that the above method is effective.


Sign in / Sign up

Export Citation Format

Share Document