1903 Impact Response Analysis of Isolated Building due to Collision with the Retaining Wall by Earthquake

2011 ◽  
Vol 2011.24 (0) ◽  
pp. 574-575
Author(s):  
Osamu ISHIZUKA ◽  
Hirofumi HOSHINA ◽  
Kazukuni NIWA
Author(s):  
Akemi Nishida ◽  
Kazuhiko Iigaki

A coaxial double-pipe structure is to be used in the primary and auxiliary coolant system of a high-temperature gas-cooled reactor. In order to study the vibration characteristics of the coaxial double-pipe structure, hammering experiments were performed using specimens of the structure. Because the structural responses obtained in the experiments contained high-frequency components, impact response analysis was performed by using the spectral element method, which has high accuracy in the high-frequency region. A comparison between analysis results and experiment results showed good agreement between them. We also performed parametric studies on the damping properties of the specimens. The damping properties determined from the experiment results indicated that the inner and outer pipes had different damping properties.


2018 ◽  
Vol 2018.31 (0) ◽  
pp. 116
Author(s):  
Takao YAMAGUCHI ◽  
Yuji SHIMOKOBE ◽  
Yusaku FUJI ◽  
Shinichi MARUYAMA ◽  
Taro KOIZUMI

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246407
Author(s):  
Fa Che ◽  
Chao Yin ◽  
Xingkui Zhao ◽  
Zhinan Hu ◽  
Lu Sheng ◽  
...  

Although embankment seismic damages are very complex, there has been little seismic fragility research yet. Researches on seismic fragility of bridges, dams and reinforced concrete (RC) structures have achieved fruitful results, which can provide references for embankment seismic fragility assessment. Meanwhile, the influencing degrees of retaining structures, such as retaining walls on the embankment seismic performances are still unclear. The K1025+470 embankment of the Xi’an-Baoji expressway was selected as the research object, and the finite difference models of the embankment fill-soil foundation system and embankment fill-soil foundation-retaining wall system were established. The ground-motion records for Incremental Dynamic Analysis (IDA) were selected and the dynamic response analysis were conducted. Probabilistic Seismic Demand Analysis (PSDA) was used to deal with the IDA results and the seismic fragility curves were generated. Based on the assessment results, the influences of the retaining wall on the embankment seismic fragility were further verified. The research results show that regardless of which seismic damage parameter is considered or the presence or absence of the retaining wall, larger PGAs always correspond to higher probabilities of each seismic damage grade. Seismic damages to the embankment fill-soil foundation-retaining wall system are always lower than those of the embankment fill-soil foundation system under the same PGA actions, thus, the retaining wall can decrease the embankment seismic fragility significantly.


Sign in / Sign up

Export Citation Format

Share Document