Research on three-dimensional cavity shape identification in concrete structures based on machine learning using hammering response data

2021 ◽  
Vol 2021.58 (0) ◽  
pp. E025
Author(s):  
Masaya SHIMADA ◽  
Takahiko KURAHASHI ◽  
Yuki MURAKAMI ◽  
Fujio IKEDA ◽  
Ikuo IHARA
JSIAM Letters ◽  
2021 ◽  
Vol 13 (0) ◽  
pp. 84-87
Author(s):  
Masaya Shimada ◽  
Takahiko Kurahashi ◽  
Yuki Murakami ◽  
Fujio Ikeda ◽  
Ikuo Ihara

2021 ◽  
Vol 11 (13) ◽  
pp. 5956
Author(s):  
Elena Parra ◽  
Irene Alice Chicchi Giglioli ◽  
Jestine Philip ◽  
Lucia Amalia Carrasco-Ribelles ◽  
Javier Marín-Morales ◽  
...  

In this article, we introduce three-dimensional Serious Games (3DSGs) under an evidence-centered design (ECD) framework and use an organizational neuroscience-based eye-tracking measure to capture implicit behavioral signals associated with leadership skills. While ECD is a well-established framework used in the design and development of assessments, it has rarely been utilized in organizational research. The study proposes a novel 3DSG combined with organizational neuroscience methods as a promising tool to assess and recognize leadership-related behavioral patterns that manifest during complex and realistic social situations. We offer a research protocol for assessing task- and relationship-oriented leadership skills that uses ECD, eye-tracking measures, and machine learning. Seamlessly embedding biological measures into 3DSGs enables objective assessment methods that are based on machine learning techniques to achieve high ecological validity. We conclude by describing a future research agenda for the combined use of 3DSGs and organizational neuroscience methods for leadership and human resources.


2021 ◽  
Vol 156 ◽  
pp. 104907
Author(s):  
Gastón M. Mendoza Veirana ◽  
Santiago Perdomo ◽  
Jerónimo Ainchil

2021 ◽  
Vol 8 (1) ◽  
pp. 205395172110135
Author(s):  
Florian Jaton

This theoretical paper considers the morality of machine learning algorithms and systems in the light of the biases that ground their correctness. It begins by presenting biases not as a priori negative entities but as contingent external referents—often gathered in benchmarked repositories called ground-truth datasets—that define what needs to be learned and allow for performance measures. I then argue that ground-truth datasets and their concomitant practices—that fundamentally involve establishing biases to enable learning procedures—can be described by their respective morality, here defined as the more or less accounted experience of hesitation when faced with what pragmatist philosopher William James called “genuine options”—that is, choices to be made in the heat of the moment that engage different possible futures. I then stress three constitutive dimensions of this pragmatist morality, as far as ground-truthing practices are concerned: (I) the definition of the problem to be solved (problematization), (II) the identification of the data to be collected and set up (databasing), and (III) the qualification of the targets to be learned (labeling). I finally suggest that this three-dimensional conceptual space can be used to map machine learning algorithmic projects in terms of the morality of their respective and constitutive ground-truthing practices. Such techno-moral graphs may, in turn, serve as equipment for greater governance of machine learning algorithms and systems.


2019 ◽  
Author(s):  
Sushant Kumar ◽  
Arif Harmanci ◽  
Jagath Vytheeswaran ◽  
Mark B. Gerstein

AbstractA rapid decline in sequencing cost has made large-scale genome sequencing studies feasible. One of the fundamental goals of these studies is to catalog all pathogenic variants. Numerous methods and tools have been developed to interpret point mutations and small insertions and deletions. However, there is a lack of approaches for identifying pathogenic genomic structural variations (SVs). That said, SVs are known to play a crucial role in many diseases by altering the sequence and three-dimensional structure of the genome. Previous studies have suggested a complex interplay of genomic and epigenomic features in the emergence and distribution of SVs. However, the exact mechanism of pathogenesis for SVs in different diseases is not straightforward to decipher. Thus, we built an agnostic machine-learning-based workflow, called SVFX, to assign a “pathogenicity score” to somatic and germline SVs in various diseases. In particular, we generated somatic and germline training models, which included genomic, epigenomic, and conservation-based features for SV call sets in diseased and healthy individuals. We then applied SVFX to SVs in six different cancer cohorts and a cardiovascular disease (CVD) cohort. Overall, SVFX achieved high accuracy in identifying pathogenic SVs. Moreover, we found that predicted pathogenic SVs in cancer cohorts were enriched among known cancer genes and many cancer-related pathways (including Wnt signaling, Ras signaling, DNA repair, and ubiquitin-mediated proteolysis). Finally, we note that SVFX is flexible and can be easily extended to identify pathogenic SVs in additional disease cohorts.


Sign in / Sign up

Export Citation Format

Share Document