scholarly journals 408 Natural Frequencies of Tapered Beam with a Crack and Crack Identification using Genetig Algorithm

2000 ◽  
Vol 2000 (0) ◽  
pp. 105-106
Author(s):  
Tadashi HORIBE ◽  
Naoki ASANO
2003 ◽  
Vol 42 (Part 1, No. 3) ◽  
pp. 1341-1347 ◽  
Author(s):  
Hai-Ping Lin

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Hamdi Alper Özyiğit ◽  
Mehmet Yetmez ◽  
Utku Uzun

As there is a gap in literature about out-of-plane vibrations of curved and variable cross-sectioned beams, the aim of this study is to analyze the free out-of-plane vibrations of curved beams which are symmetrically and nonsymmetrically tapered. Out-of-plane free vibration of curved uniform and tapered beams with additional mass is also investigated. Finite element method is used for all analyses. Curvature type is assumed to be circular. For the different boundary conditions, natural frequencies of both symmetrical and unsymmetrical tapered beams are given together with that of uniform tapered beam. Bending, torsional, and rotary inertia effects are considered with respect to no-shear effect. Variations of natural frequencies with additional mass and the mass location are examined. Results are given in tabular form. It is concluded that (i) for the uniform tapered beam there is a good agreement between the results of this study and that of literature and (ii) for the symmetrical curved tapered beam there is also a good agreement between the results of this study and that of a finite element model by using MSC.Marc. Results of out-of-plane free vibration of symmetrically tapered beams for specified boundary conditions are addressed.


2014 ◽  
Vol 36 (2) ◽  
pp. 119-132
Author(s):  
Nguyen Tien Khiem ◽  
Duong The Hung ◽  
Vu Thi An Ninh

A new approach is proposed for calculating natural frequencies and crack detection in a stepped cantilever beam with arbitrary number of cracks. This is based an explicit expression of the natural frequencies in term of crack parameter derived in the form similar to the so-called Rayleigh quotient for vibrating beam. The obtained simple relationship between natural frequencies and crack parameters enables not only accurate calculating the natural frequencies but also to develop an efficient procedure for detecting multiple cracks from given natural frequencies. The proposed technique called crack scanning method is illustrated and validated by numerical results.


2017 ◽  
Vol 17 (10) ◽  
pp. 1750111
Author(s):  
Ugurcan Eroglu ◽  
Ekrem Tufekci

In this paper, a procedure based on the transfer matrix method for obtaining the exact solution to the equations of free vibration of damaged frame structures, considering the effects of axial extension, shear deformation, rotatory inertia, and all compliance components arising due to the presence of a crack, is presented. The crack is modeled by a rotational and/or translational spring based on the concept of linear elastic fracture mechanics. Only the in-plane motion of planar structures is considered. The formulation is validated through some examples existing in the literature. Additionally, the mode shapes and natural frequencies of a frame with pitched roof are provided. The variation of natural frequencies with respect to the crack location is presented. It is concluded that considering the axial compliance, and axial-bending coupling due to the presence of a crack results in different dynamic characteristics, which should be considered for problems where high precision is required, such as for the crack identification problems.


Sign in / Sign up

Export Citation Format

Share Document