Effect of Radius Ratio of Core – Shell Droplet on Interfacial Tension Measurement using Electrostatic Levitation Method

2020 ◽  
Vol 2020 (0) ◽  
pp. 17G07
Author(s):  
Shoma KATO ◽  
Satoshi MATSUMOTO ◽  
Akiko KANEKO ◽  
Yutaka ABE
1984 ◽  
Vol 75 ◽  
pp. 607-613 ◽  
Author(s):  
Kevin D. Pang ◽  
Charles C. Voge ◽  
Jack W. Rhoads

Abstract.All observed optical and infrared properties of Saturn's E-ring can be explained in terms of Mie scattering by a narrow size distribution of ice spheres of 2 - 2.5 micron diameter. The spherical shape of the ring particles and their narrow size distribution imply a molten (possibly volcanic) origin on Enceladus. The E-ring consists of many layers, possibly stratified by electrostatic levitation.


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Xiaofei Wang ◽  
Jiangbei Yao ◽  
Zhengkai Li ◽  
Yuntao Liu ◽  
Jin Cai

2015 ◽  
Vol 53 (4) ◽  
pp. 287-293
Author(s):  
Byung-Hyun Choi ◽  
Young Jin Kang ◽  
Sung-Hun Jung ◽  
Yong-Tae An ◽  
Mi-Jung Ji

2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Sign in / Sign up

Export Citation Format

Share Document