Aerodynamic characteristics of high speed spinning golf ball : Effect of flow direction change

2003 ◽  
Vol 2003.56 (0) ◽  
pp. 145-146
Author(s):  
Taketo MIZOTA ◽  
Sungmin PARK ◽  
Hiroyuki MIYAHISA ◽  
Yasunori NAKAMURA
2020 ◽  
Vol 12 (12) ◽  
pp. 168781402098437
Author(s):  
Liu Jiang ◽  
Guo Zhiping ◽  
Miao Shujing ◽  
He Xiangxin ◽  
Zhu Xinyu

In order to meet the requirements of output torque, efficiency and compact shape of micro-spindles for small parts machining, a two-stage axial micro air turbine spindle with an axial inlet and outlet is proposed. Based on the k-ω turbulence model of SST, the flow field and operation characteristics of the two-stage axial micro air turbine spindle were studied using computational fluid dynamics (CFD) combined with an experimental study. We obtained the air turbine spindle under different working conditions of the loss and torque characteristics. When the inlet pressure was 300 KPa, the output speed of the two-stage turbine was 100,000 rpm, 9% higher than that of a single-stage turbine output torque. The total torque reached 6.39 N·mm, and the maximum efficiency of the turbine and the spindle were 42.2% and 32.3%, respectively. Through the research on the innovative structure of the two-stage axial micro air turbine spindle, the overall performance of the principle prototype has been significantly improved and the problems of insufficient output torque and low working efficiency in high-speed micro-machining can be solved practically, which laid a solid foundation for improving the machining efficiency of small parts and reducing the size of micro machine tool.


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


Author(s):  
Hideo Ide ◽  
Eiji Kinoshita ◽  
Ryo Kuroshima ◽  
Takeshi Ohtaka ◽  
Yuichi Shibata ◽  
...  

Gas-liquid two-phase flows in minichannels and microchannels display a unique flow pattern called ring film flow, in which stable waves of relatively large amplitudes appear at seemingly regular intervals and propagate in the flow direction. In the present work, the velocity characteristics of gas slugs, ring films, and their features such as the gas slug length, flow phenomena and frictional pressure drop for nitrogen-distilled water and nitrogen-30 wt% ethanol water solution have been investigated experimentally. Four kinds of circular microchannels with diameters of 100 μm, 150 μm, 250 μm and 518 μm were used. The effects of tube diameter and physical properties, especially the surface tension and liquid viscosity, on the flow patterns, gas slug length and the two-phase frictional pressure drop have been investigated by using a high speed camera at 6,000 frames per second. The flow characteristics of gas slugs, liquid slugs and the waves of ring film are presented in this paper.


2013 ◽  
Vol 300-301 ◽  
pp. 62-67
Author(s):  
Kun Ye ◽  
Ren Xian Li

Cutting is an effective device to reduce crosswind loads acting on trains. The cutting depth, width and gradient of slope are important factors for design and construction of cutting. Based on numerical analysis methods of three-dimensional viscous incompressible aerodynamics equations, aerodynamic side forces and yawing moments acting on the high-speed train, with different depths and widths of cutting,are calculated and analyzed under crosswinds,meanwhile the relationship of the gradient of cutting slope and transverse aerodynamic forces acting on trains are also studied. Simulation results show that aerodynamic side forces and yawing moments acting on the train(the first, middle and rear train)decrease with the increase of cutting depth. The relationship between transverse forces (moments) coefficients acting on the three sections and the cutting depth basically is the three cubed relation. The bigger is cutting width,the worse is running stability of train. The relationship between yawing moments coefficients acting each body of the train and the cutting width approximately is the three cubed relation. The transverse Aerodynamic forces decreased gradually with the increase of the gradient of cutting slope, the relationship between yawing moments coefficients acting each body of the train and the gradient of cutting slope basically is the four cubed relation.


Sign in / Sign up

Export Citation Format

Share Document