Mechanical Behavior of Viscoelastic Materials

1965 ◽  
Vol 68 (552) ◽  
pp. 83-92
Author(s):  
Takeshi KUNIO ◽  
M.L. WILLIAMS
Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 23
Author(s):  
Giuseppe Carbone ◽  
Francesco Bottiglione

The mechanical behavior of viscoelastic materials is a key factor of many physical phenomena occurring at the interface of contacting bodies [...]


2019 ◽  
Vol 221 ◽  
pp. 01052
Author(s):  
Evgeny Shilko ◽  
Ivan Dudkin ◽  
Aleksandr Grigoriev

The paper is devoted to the development of the formalism of the computational method of discrete elements (DEM) for describing the mechanical behavior of consolidated viscoelastic materials. We considered an advanced implementation of DEM, namely, the method of movable cellular automata (MCA). A feature of this implementation of DEM is the use of a generalized many-body formulation of the relations for the forces of element-element interaction. 3D numerical models of viscoelastic material with a spectrum of relaxation times (Kelvin and Maxwell models, the standard model of elastomers, and others) were developed within the formalism of MCA. The correctness of the developed discrete element formalism and its applicability for modeling the processes of deformation and fracture of viscoelastic materials under dynamic loading are shown using the standard model of elastomers as an example. The relevance of the results is determined by the prospects for the further development of DEM and its application to study and predict the mechanical response of viscoelastic materials of various nature under dynamic loading including contact problems.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


Sign in / Sign up

Export Citation Format

Share Document