scholarly journals J026036 Cell migration observation and traction force measurement using multichannel device

2013 ◽  
Vol 2013 (0) ◽  
pp. _J026036-1-_J026036-3
Author(s):  
Toshiro OHASHI ◽  
Akito SUGAWARA ◽  
2013 ◽  
Vol 2013 (0) ◽  
pp. _OS0712-1_-_OS0712-2_
Author(s):  
Toshiro OHASHI ◽  
Akito SUGAWARA ◽  
Justin Cooper-White

Author(s):  
Toshiro Ohashi ◽  
Akito Sugawara

Cell migration is essential for a variety of biological and pathological processes such as wound healing, inflammation and tumor metastasis. However, the mechanical environment within a group of cells during collective migration has not been well characterized. In this study, a polydimethylsiloxane (PDMS) multichannel device was fabricated using standard photolithography and soft lithography techniques and was used to monitor cellular traction forces during migration. A migration rate of 5.7 μm/h was measured in microchannels and leading cells in the moving front of the migration generated traction forces with a maximum magnitude of 14 nN at their front side. Traction forces generated by cells behind the leading cells directed forces backward at both the front and rear sides. However, traction forces generated by cells behind the second row had forces in random directions and with smaller magnitudes compared to those on the front and the second row. It is assumed that cells on the front line generated large traction forces and migrated actively as single cells, pulling adjacent cells forward, whereas the cell movement after the third row was restricted by mechanical linkages between their neighboring cells.


2021 ◽  
Vol 120 (3) ◽  
pp. 113a
Author(s):  
Wouter-Jan Rappel ◽  
Elisabeth Ghabache ◽  
Yuansheng Cao ◽  
Yuchuan Miao ◽  
Alexander Groisman ◽  
...  

Author(s):  
Tianfa Xie ◽  
Jamar Hawkins ◽  
Yubing Sun

2018 ◽  
Vol 115 (11) ◽  
pp. 2764-2769 ◽  
Author(s):  
Kouki Abe ◽  
Hiroko Katsuno ◽  
Michinori Toriyama ◽  
Kentarou Baba ◽  
Tomoyuki Mori ◽  
...  

Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0171938 ◽  
Author(s):  
Kristina Pettersson ◽  
Khurram Yousaf ◽  
Jonas Ranstam ◽  
Magnus Westgren ◽  
Gunilla Ajne

Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 920-932 ◽  
Author(s):  
Yonghua Chen ◽  
Qingyou Liu ◽  
Tao Ren

SUMMARYPipeline grids of various size and material are pervasive in today's modern society. The frequent inspection and maintenance of such pipeline grids have presented a tremendous challenge. It is advocated that only advanced robot design embedded with intelligent electronics and control algorithms could perform the job. Given the ever increasing demands for intelligent in-pipe robots, various in-pipe drive mechanisms have been reported. One of the simplest is helical wheel drives that have only one degree of freedom. All previously reported in-pipe helical drives are based on independent passive wheels that are tilted an angle. One of the major problems of current helical wheel drives is their unstable traction force. In this paper, instead of allowing the wheels to rotate independently, they are synchronized by adding a timing belt. This small change will result in significant improvement which will be highlighted in this paper. In the proposed driving method, tracking force is analyzed together with a comprehensive set of traction force measurement experiments. Both analysis and experiments have shown that the proposed mechanism has great potential for in-pipe robot drive design.


2015 ◽  
Vol 465 (3) ◽  
pp. 383-393 ◽  
Author(s):  
Karry M. Jannie ◽  
Shawn M. Ellerbroek ◽  
Dennis W. Zhou ◽  
Sophia Chen ◽  
David J. Crompton ◽  
...  

Vinculin transduces force and orchestrates mechanical signalling at cell–cell and cell–matrix adhesions. Cells expressing a mutant vinculin deficient in actin binding and bundling display migration and traction force defects. Vinculin binding to actin is critical for cell migration and force generation.


2021 ◽  
Author(s):  
Julia Eckert ◽  
Yasmine Abouleila ◽  
Thomas Schmidt ◽  
Alireza Mashaghi

Mechanotransduction, the ability of cells to sense and respond to the mechanical cues from their microenvironment, plays an important role in numerous cellular processes, ranging from cell migration to differentiation. Several techniques have been developed to investigate the underlying mechanisms of mechanotransduction, in particular, force measurement-based techniques. However, we still lack basic single cell quantitative comparison on the mechanical properties of commonly used cell types, such as endothelial and fibroblast cells. Such information is critical to provide a precedent for studying complex tissues and organs that consist of various cell types. In this short communication, we report on the mechanical characterization of the commonly used endothelial and fibroblast cells at the single cell level. Using a micropillar-based assay, we measured the traction force profiles of these cells. Our study showcases differences between the two cell types in their traction force distribution and morphology. The results reported can be used as a reference and to lay the groundwork for future analysis of numerous disease models involving these cells.


Sign in / Sign up

Export Citation Format

Share Document