Visco-elastic control of elastomer with magnetic particles by applied magnetic field

2016 ◽  
Vol 2016 (0) ◽  
pp. J2230204
Author(s):  
Daiki MAEDE ◽  
Fujio TSUMORI ◽  
Kentaro KUDO ◽  
Toshiko OSADA
2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Xingji Li ◽  
Zhilong Peng ◽  
Yazheng Yang ◽  
Shaohua Chen

Bio-inspired functional surfaces attract many research interests due to the promising applications. In this paper, tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field is investigated theoretically in order to disclose the mechanical mechanism of changeable adhesion and the influencing factors. Each polydimethylsiloxane (PDMS) micropillar reinforced by uniformly distributed magnetic particles is assumed to be a cantilever beam. The beam's large elastic deformation is obtained under an externally magnetic field. Specially, the rotation angle of the pillar's end is predicted, which shows an essential effect on the changeable adhesion of the micropillar arrayed surface. The larger the strength of the applied magnetic field, the larger the rotation angle of the pillar's end will be, yielding a decreasing adhesion force of the micropillar arrayed surface. The difference of adhesion force tuned by the applied magnetic field can be a few orders of magnitude, which leads to controllable adhesion of such a micropillar arrayed surface. Influences of each pillar's cross section shape, size, intervals between neighboring pillars, and the distribution pattern on the adhesion force are further analyzed. The theoretical predictions are qualitatively well consistent with the experimental measurements. The present theoretical results should be helpful not only for the understanding of mechanical mechanism of tunable adhesion of micropillar arrayed surface under a magnetic field but also for further precise and optimal design of such an adhesion-controllable bio-inspired surface in future practical applications.


2015 ◽  
Vol 393 ◽  
pp. 243-252 ◽  
Author(s):  
Sandip Kulkarni ◽  
Bharath Ramaswamy ◽  
Emily Horton ◽  
Sruthi Gangapuram ◽  
Alek Nacev ◽  
...  

2009 ◽  
Vol 23 (20n21) ◽  
pp. 4021-4040
Author(s):  
D. M. FORRESTER ◽  
E. KOVACS ◽  
K. E. KÜRTEN ◽  
F. V. KUSMARTSEV

The interaction of two magnetic particles separated by an interlayer is illustrated through the "astroid" curves that represent regions in the magnetic field plane where different numbers of minima associated with stable or metastable states may exist. For a single particle, we describe the astroid curves of the Stoner-Wohlfarth model. The case of two particles is then examined and found to be much more complicated. The energy landscape of the two-particle system contains ferromagnetic, antiferromagnetic and canting states that emerge in response to the level of applied magnetic field. Because of this, up to four energy minima can exist in the system, depending upon the strength of the magnetic field and the material properties of the particles.


Open Physics ◽  
2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Laura Pérez ◽  
Omar Suarez ◽  
David Laroze ◽  
Hector Mancini

AbstractIn the present work we study the deterministic spin dynamics of two interacting anisotropic magnetic particles in the presence of an external magnetic field using the Landau-Lifshitz equation. The interaction between particles is through the exchange energy. We study both conservative and dissipative cases. In the first one, we characterize the dynamical behavior of the system by monitoring the Lyapunov exponents and bifurcation diagrams. In particular, we explore the dependence of the largest Lyapunov exponent respect to the magnitude of applied magnetic field and exchange constant. We find that the system presents multiple transitions between regular and chaotic behaviors. We show that the dynamical phases display a very complicated topology of intricately intermingled chaotic and regular regions. In the dissipative case, we calculate the final saturation states as a function of the magnitude of the applied magnetic field, exchange constant as well as the anisotropy constants.


2009 ◽  
Vol 152-153 ◽  
pp. 167-170 ◽  
Author(s):  
Alexander Tyatyushkin

A suspension of magnetic particles in a viscous liquid magnetized in an alternating uniform magnetic field is theoretically studied. The suspension is regarded as so dilute that interaction of a single particle with the applied magnetic field can be considered without taking into account the influence of other particles. The complex magnetic susceptibility of the suspension is found as a function of the frequency of the applied magnetic field. The heat generation power density averaged over the period of the oscillations is calculated.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Zhiqiang Xu ◽  
Heng Wu ◽  
Qiuliang Wang ◽  
Liyin Yi ◽  
Jun Wang

Magnetorheological elastomer (MRE) is an intelligent composite material and has been widely used in various fields such as vibration reduction and sensing. MRE has an excellent magnetorheological effect through the chaining of its internal magnetic particles. Current studies on MREs mainly focus on the preparation of materials and characterization of mechanical properties. However, very few studies have been conducted on the mechanism of magnetic particle motion during MRE curing. Based on the silicone rubber-based MRE, the motion mechanism of magnetic particles during curing was explored through numerical simulation. First, we analyzed the magnetic force and viscous force of magnetic particles in MRE and discussed the equations of motion of magnetic particles under applied magnetic field. Further, we established a uniform magnetic field model through the finite element method and simulated the motion of two magnetic particles under the magnetic field. Finally, we discussed the effects of particle distribution angles, particle radii, applied magnetic field strength, and distance between particles on particle velocity and displacement. The results show that the distance between particles has the greatest influence on the motion of magnetic particles, and the size of the distance between particles will affect the contact time of the particles, thus affecting the chain formation of magnetic particles in the MRE.


2020 ◽  
Vol 17 (3) ◽  
pp. 405-420 ◽  
Author(s):  
Yi Lei ◽  
Zhizhi Sheng ◽  
Jian Zhang ◽  
Jing Liu ◽  
Wei Lv ◽  
...  

AbstractThe ability of natural living organisms, transferring deformations into locomotion, has attracted researchers’ increasing attention in building bionic actuators and smart systems. As a typical category of functional materials, magnetoresponsive composite elastomers, comprised of flexible elastomer matrices and rigid magnetic particles, have been playing critical roles in this field of research due to their dynamic changes in response to applied magnetic field direction and intensity. The magnetically driven bionic actuators based on magnetoresponsive composite elastomers have been developed to achieve some specific functions in some special fields. For instance, under the control of the applied magnetic field, the bionic actuators can not only generate time-varying deformation, but also motion in diverse environments, suggesting new possibilities for target gripping and directional transporting especially in the field of artificial soft robots and biological engineering. Therefore, this review comprehensively introduces the component, fabrication, and bionic locomotion application of magnetoresponsive composite elastomers. Moreover, existing challenges and future perspectives are further discussed.


2008 ◽  
Vol 144 ◽  
pp. 244-249 ◽  
Author(s):  
Yousef Razouk ◽  
Eric Duhayon ◽  
Bertrand Nogarede

This paper deals with the development of a new type of composites called "magnetoactivated" polymers and the exploration of some of their potential applications. "Magnetoactivated" polymers consist of small embedding (micron-sized) magnetic particles in a high elastic silicon matrix to render it magnetically active and at the same time mechanically strong. The experimental characterizations obtained (magnetic permeability and Young modulus) were systematically compared with the values resulting from the modeling of this material.The elastic properties of our "magnetoactivated" silicon motive us to use them as pump membranes, the evolution of the displacement of the pump membrane with the applied magnetic field were verified in ANSYS and experimentally for various contents of iron particles in the silicon matrix.


Author(s):  
Yotsugi Shibuya ◽  
Hiroshi Nasuno ◽  
Katsuaki Sunakoda

Magneto-rheological composites with magnetic particles are prepared. The magnetic particle is Fe-Si-B-Cr system and the average diameter is 10μm. Matrix of the composite is silicon gel. We characterized dynamic response of the material by shear test in magnetic field where intensities are 0 mT, 105 mT and 211 mT. The stiffness and damping capacity of the composite increase with increasing of the magnetic field. To understand mechanism of behavior of magneto-rheological composites, we make a model of the composite with periodical micro structure. The magneto-rheological composite undergoes magnetically induced internal stress field by applied magnetic field. The analysis model involved effect of the applied magnetic field as initial stress in the material. Particles and the magnetically induced stress make locally large strain field in the gel material. A large deformation analysis with the Ogden model using finite element method is made to demonstrate behavior of magneto-rheological composites. The simulation results are compared with experiment results and verified the effectiveness of the model.


Sign in / Sign up

Export Citation Format

Share Document