The Mean Flow Quantities in an Equilibrium Boundary Layer Subjected to the Adverse Pressure Gradient

2002 ◽  
Vol 2002.3 (0) ◽  
pp. 75-76
Author(s):  
Shinsuke MOCHIZUKI ◽  
Takanori NAKAMURA ◽  
Kentaro MURAMOTO ◽  
Hideo OSAKA
1994 ◽  
Vol 272 ◽  
pp. 319-348 ◽  
Author(s):  
Per Egil Skåre ◽  
Per-åge Krogstad

The experimental results for an equilibrium boundary layer in a strong adverse pressure gradient flow are reported. The measurements show that similarity in the mean flow and the turbulent stresses has been achieved over a substantial streamwise distance where the skin friction coefficient is kept at a low, constant level. Although the Reynolds stress distribution across the layer is entirely different from the flow at zero pressure gradient, the ratios between the different turbulent stress components were found to be similar, showing that the mechanism for distributing the turbulent energy between the different components remains unaffected by the mean flow pressure gradient. Close to the surface the gradient of the mixing length was found to increase from Kl ≈ 0.41 to Kl ≈ 0.78, almost twice as high as for the zero pressure gradient case. Similarity in the triple correlations was also found to be good. The correlations show that there is a considerable diffusion of turbulent energy from the central part of the boundary layer towards the wall. The diffusion mechanism is caused by a second peak in the turbulence production, located at y/δ ≈ 0.45. This production was for the present case almost as strong as the production found near the wall. The energy budget for the turbulent kinetic energy also shows that strong dissipation is not restricted to the wall region, but is significant for most of the layer.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


Author(s):  
Takanori Nakamura ◽  
Takatsugu Kameda ◽  
Shinsuke Mochizuki

Experiments were performed to investigate the effect of an adverse pressure gradient on the mean velocity and turbulent intensity profiles for an equilibrium boundary layer. The equilibrium boundary layer, which makes self-similar profiles, was constructed using a power law distribution of free stream velocity. The exponent of the law was adjusted to −0.188. The wall shear stress was measured with a drag balance by a floating element. The investigation of the law of the wall and the similarity of the streamwise turbulent intensity profile was made using both a friction velocity and new proposed velocity scale. The velocity scale is derived from the boundary layer equation. The mean velocity gradient profile normalized with the height and the new velocity scale exists the region where the value is almost constant. The turbulent intensity profiles normalized with the friction velocity strongly depend on the nondimensional pressure gradient near the wall. However, by mean of the local velocity scale, the profiles might be achieved to be similar with that of a zero pressure gradient.


2001 ◽  
Vol 446 ◽  
pp. 271-308 ◽  
Author(s):  
M. KALTER ◽  
H. H. FERNHOLZ

This paper is an extension of an experimental investigation by Alving & Fernholz (1996). In the present experiments the effects of free-stream turbulence were investigated on a boundary layer with an adverse pressure gradient and a closed reverse-flow region. By adding free-stream turbulence the mean reverse-flow region was shortened or completely eliminated and this was used to control the size of the separation bubble. The turbulence intensity was varied between 0.2% and 6% using upstream grids while the turbulence length scale was on the order of the boundary layer thickness. Mean and fluctuating velocities as well as spectra were measured by means of hot-wire and laser-Doppler anemometry and wall shear stress by wall pulsed-wire and wall hot-wire probes.Free-stream turbulence had a small effect on the boundary layer in the mild adverse-pressure-gradient region but in the vicinity of separation and along the reverse-flow region mean velocity profiles, skin friction and turbulence structure were strongly affected. Downstream of the mean or instantaneous reverse-flow regions highly disturbed boundary layers developed in a nominally zero pressure gradient and converged to a similar turbulence structure in all three cases at the end of the test section. This state was, however, still very different from that in a canonical boundary layer.


2001 ◽  
Vol 2001.39 (0) ◽  
pp. 197-198
Author(s):  
Kentaro MURAMOTO ◽  
Takatsugu KAMEDA ◽  
Shinsuke MOCHIDUKI ◽  
Hideo OSAKA

Author(s):  
Weijie Shao ◽  
Martin Agelin-Chaab

This paper reports an investigation of the effects of adverse pressure gradient on turbulent flows over forward facing step. Three adverse pressure gradients were created for this study using diverging channels. A particle image velocimetry technique was used to conduct measurements in the streamwise-wall-normal (x-y) planes at the mid-plane of test section at several locations downstream to 68 step heights. A Reynolds number of Reh = 4800 and δ/h = 4.7 were employed, where h is the mean step height and δ is the approach boundary layer thickness. The results include the mean flow and turbulence quantities as well as proper orthogonal decomposition analysis. The mean reattachment length obtained indicates that the adverse pressure gradient created in this study does not have significant effects on the reattachment length. The triple velocity correlations imply that there is negative transport of turbulence kinetic energy close to the wall and positive transport away from the wall. In addition to the physical insight, the high quality data reported are useful for assessing the ability of turbulence models to reproduce the behaviour of complex flows.


1990 ◽  
Vol 211 ◽  
pp. 285-307 ◽  
Author(s):  
Emerick M. Fernando ◽  
Alexander J. Smits

This investigation describes the effects of an adverse pressure gradient on a flat plate supersonic turbulent boundary layer (Mf ≈ 2.9, βx ≈ 5.8, Reθ, ref ≈ 75600). Single normal hot wires and crossed wires were used to study the Reynolds stress behaviour, and the features of the large-scale structures in the boundary layer were investigated by measuring space–time correlations in the normal and spanwise directions. Both the mean flow and the turbulence were strongly affected by the pressure gradient. However, the turbulent stress ratios showed much less variation than the stresses, and the essential nature of the large-scale structures was unaffected by the pressure gradient. The wall pressure distribution in the current experiment was designed to match the pressure distribution on a previously studied curved-wall model where streamline curvature acted in combination with bulk compression. The addition of streamline curvature affects the turbulence strongly, although its influence on the mean velocity field is less pronounced and the modifications to the skin-friction distribution seem to follow the empirical correlations developed by Bradshaw (1974) reasonably well.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
M. Agelinchaab ◽  
M. F. Tachie

This paper reports an experimental study of the combined effects of rib roughness and pressure gradient on turbulent flows produced in asymmetric converging and diverging channels. Transverse square ribs with pitch-to-height ratio of 4 were attached to the bottom wall of the channel to produce the rib roughness. A particle image velocimetry technique was used to conduct measurements at several streamwise-transverse planes located upstream, within, and downstream of the converging and diverging sections of the channel. From these measurements, the mean velocities and turbulent statistics at the top plane of the ribs and across the channel were obtained. The data revealed non-negligible wall-normal motion and interaction between the cavities and overlying boundary layers. The different drag characteristics of the rough bottom wall and the smooth top wall produced asymmetric distributions of mean velocity and turbulent statistics across the channel. The asymmetry of these profiles is most extreme in the presence of adverse pressure gradient. Because of the manner in which pressure gradient modifies the mean flow and turbulence production, it was found that the streamwise turbulence intensity and Reynolds shear stress in the vicinity of the ribs are lower in the adverse pressure gradient than in the favorable pressure gradient channel. The results show also that the combined effects of rib roughness and adverse pressure gradient on the turbulent intensity statistics are significantly higher than when roughness and adverse pressure gradient are applied in isolation.


Sign in / Sign up

Export Citation Format

Share Document