Experimental Investigation of a Turbulent Boundary Layer Subjected to an Adverse Pressure Gradient

Author(s):  
Takanori Nakamura ◽  
Takatsugu Kameda ◽  
Shinsuke Mochizuki

Experiments were performed to investigate the effect of an adverse pressure gradient on the mean velocity and turbulent intensity profiles for an equilibrium boundary layer. The equilibrium boundary layer, which makes self-similar profiles, was constructed using a power law distribution of free stream velocity. The exponent of the law was adjusted to −0.188. The wall shear stress was measured with a drag balance by a floating element. The investigation of the law of the wall and the similarity of the streamwise turbulent intensity profile was made using both a friction velocity and new proposed velocity scale. The velocity scale is derived from the boundary layer equation. The mean velocity gradient profile normalized with the height and the new velocity scale exists the region where the value is almost constant. The turbulent intensity profiles normalized with the friction velocity strongly depend on the nondimensional pressure gradient near the wall. However, by mean of the local velocity scale, the profiles might be achieved to be similar with that of a zero pressure gradient.

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1087
Author(s):  
Eslam Reda Lotfy ◽  
Zambri Harun

The inertial sublayer comprises a considerable and critical portion of the turbulent atmospheric boundary layer. The mean windward velocity profile is described comprehensively by the Monin–Obukhov similarity theory, which is equivalent to the logarithmic law of the wall in the wind tunnel boundary layer. Similar logarithmic relations have been recently proposed to correlate turbulent velocity variances with height based on Townsend’s attached-eddy theory. The theory is particularly valid for high Reynolds-number flows, for example, atmospheric flow. However, the correlations have not been thoroughly examined, and a well-established model cannot be reached for all turbulent variances similar to the law of the wall of the mean-velocity. Moreover, the effect of atmospheric thermal condition on Townsend’s model has not been determined. In this research, we examined a dataset of free wind flow under a near-neutral range of atmospheric stability conditions. The results of the mean velocity reproduce the law of the wall with a slope of 2.45 and intercept of −13.5. The turbulent velocity variances were fitted by logarithmic profiles consistent with those in the literature. The windward and crosswind velocity variances obtained the average slopes of −1.3 and −1.7, respectively. The slopes and intercepts generally increased away from the neutral state. Meanwhile, the vertical velocity and temperature variances reached the ground-level values of 1.6 and 7.8, respectively, under the neutral condition. The authors expect this article to be a groundwork for a general model on the vertical profiles of turbulent statistics under all atmospheric stability conditions.


1956 ◽  
Vol 1 (2) ◽  
pp. 191-226 ◽  
Author(s):  
Donald Coles

After an extensive survey of mean-velocity profile measurements in various two-dimensional incompressible turbulent boundary-layer flows, it is proposed to represent the profile by a linear combination of two universal functions. One is the well-known law of the wall. The other, called the law of the wake, is characterized by the profile at a point of separation or reattachment. These functions are considered to be established empirically, by a study of the mean-velocity profile, without reference to any hypothetical mechanism of turbulence. Using the resulting complete analytic representation for the mean-velocity field, the shearing-stress field for several flows is computed from the boundary-layer equations and compared with experimental data.The development of a turbulent boundary layer is ultimately interpreted in terms of an equivalent wake profile, which supposedly represents the large-eddy structure and is a consequence of the constraint provided by inertia. This equivalent wake profile is modified by the presence of a wall, at which a further constraint is provided by viscosity. The wall constraint, although it penetrates the entire boundary layer, is manifested chiefly in the sublayer flow and in the logarithmic profile near the wall.Finally, it is suggested that yawed or three-dimensional flows may be usefully represented by the same two universal functions, considered as vector rather than scalar quantities. If the wall component is defined to be in the direction of the surface shearing stress, then the wake component, at least in the few cases studied, is found to be very nearly parallel to the gradient of the pressure.


1989 ◽  
Vol 111 (4) ◽  
pp. 420-427 ◽  
Author(s):  
L. C. Thomas ◽  
S. M. F. Hasani

Approximations for total stress τ and mean velocity u are developed in this paper for transpired turbulent boundary layer flows. These supplementary boundary-layer approximations are tested for a wide range of near equilibrium flows and are incorporated into an inner law method for evaluating the mean wall shear stress τ0. The testing of the proposed approximations for τ and u indicates good agreement with well-documented data for moderate rates of blowing and suction and pressure gradient. These evaluations also reveal limitations in the familiar logarithmic law that has traditionally been used in the determination of wall shear stress for non-transpired boundary-layer flows. The calculations for τ0 obtained by the inner law method developed in this paper are found to be consistent with results obtained by the modern Reynolds stress method for a broad range of near equilibrium conditions. However, the use of the proposed inner law method in evaluating the mean wall shear stress for early classic near equilibrium flow brings to question the reliability of the results for τ0 reported for adverse pressure gradient flows in the 1968 Stanford Conference Proceedings.


1974 ◽  
Vol 65 (2) ◽  
pp. 261-287 ◽  
Author(s):  
Ronald L. Panton ◽  
John H. Linebarger

Assuming information about the mean velocity and vertical turbulent velocity, it is possible to calculate the flow direction wavenumber spectrum of pressure fluctuations ϕ(k1 δ)/τ02δ. The law of the wall plus Cole's wake function represented the mean velocity profiles. A scale-anisotropic model of R22 was used and the component intensity û2 was assumed to vary across the boundary layer in constant proportionality to the Reynolds stress. Calculated zero-pressure-gradient spectra rise as k11.5 at low wavenumbers. Curves for various Reynolds numbers are closely similar, and diverge only slightly around the peak in the spectrum. A high wavenumber spectrum ϕk1v/u*. u*/τ02v is independent of Reynolds number. The calculations reveal an overlap region in which ϕ ∼ k1−1. Imposing an equilibrium pressure gradient increases the spectrum at the low and mid wavenumbers, but has no effect in the overlap region. The spectrum peak for II = 6 is a factor 102 higher than for the zero-pressure-gradient layer. It is proposed that the convective velocity Uc(k1) has an overlap region. The overlap law is found to be \[ \frac{U_c}{u_{*}} = -\frac{1}{\kappa}\ln k_1\delta +\frac{1}{\kappa}\ln\frac{u_{*}\delta}{\nu}+A, \] where K and A are the same constants as in the mean velocity expression. Comparison with experiments shows very good agreement. A rough convective ‘wake’ function is formulated for the low-wavenumber range. Wavenumber spectra are converted to frequency spectra, and compared with experiments. Data from a zero pressure gradient and an adverse pressure gradient II = 3 show reasonable agreement with the calculations.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


1975 ◽  
Vol 70 (3) ◽  
pp. 573-593 ◽  
Author(s):  
W. H. Schofield

The response of turbulent boundary layers to sudden changes in surface roughness under adverse-pressure-gradient conditions has been studied experimentally. The roughness used was in the ‘d’ type array of Perry, Schofield & Joubert (1969). Two cases of a rough-to-smooth change in surface roughness were considered in the same arbitrary adverse pressure gradient. The two cases differed in the distance of the surface discontinuity from the leading edge and gave two sets of flow conditions for the establishment and growth of the internal layer which develops downstream from a change in surface roughness. These conditions were in turn different from those in the zero-pressure-gradient experiments of Antonia & Luxton. The results suggest that the growth of the new internal layer depends solely on the new conditions at the wall and scales with the local roughness length of that wall. Mean velocity profiles in the region after the step change in roughness were accurately described by Coles’ law of the wall-law of the wake combination, which contrasts with the zero-pressure-gradient results of Antonia & Luxton. The skin-friction coefficient after the step change in roughness did not overshoot the equilibrium distribution but made a slow adjustment downstream of the step. Comparisons of mean profiles indicate that similar defect profile shapes are produced in layers with arbitrary adverse pressure gradients at positions where the values of Clauser's equilibrium parameter β (= δ*τ−10dp/dx) are similar, provided that the pressure-gradient history and local values of the pressure gradient are also similar.


2002 ◽  
Vol 461 ◽  
pp. 61-91 ◽  
Author(s):  
A. E. PERRY ◽  
IVAN MARUSIC ◽  
M. B. JONES

A new approach to the classic closure problem for turbulent boundary layers is presented. This involves, first, using the well-known mean-flow scaling laws such as the log law of the wall and the law of the wake of Coles (1956) together with the mean continuity and the mean momentum differential and integral equations. The important parameters governing the flow in the general non-equilibrium case are identified and are used for establishing a framework for closure. Initially closure is achieved here empirically and the potential for achieving closure in the future using the wall-wake attached eddy model of Perry & Marusic (1995) is outlined. Comparisons are made with experiments covering adverse-pressure-gradient flows in relaxing and developing states and flows approaching equilibrium sink flow. Mean velocity profiles, total shear stress and Reynolds stress profiles can be computed for different streamwise stations, given an initial upstream mean velocity profile and the streamwise variation of free-stream velocity. The attached eddy model of Perry & Marusic (1995) can then be utilized, with some refinement, to compute the remaining unknown quantities such as Reynolds normal stresses and associated spectra and cross-power spectra in the fully turbulent part of the flow.


Author(s):  
Yvan Maciel ◽  
Tie Wei ◽  
Ayse G. Gungor ◽  
Mark P. Simens

We perform a careful nondimensional analysis of the turbulent boundary layer equations in order to bring out, without assuming any self-similar behaviour, a consistent set of nondimensional parameters characterizing the outer region of turbulent boundary layers with arbitrary pressure gradients. These nondimensional parameters are a pressure gradient parameter, a Reynolds number (different from commonly used ones) and an inertial parameter. They are obtained without assuming a priori the outer length and velocity scales. They represent the ratio of the magnitudes of two types of forces in the outer region, using the Reynolds shear stress gradient (apparent turbulent force) as the reference force: inertia to apparent turbulent forces for the inertial parameter, pressure to apparent turbulent forces for the pressure gradient parameter and apparent turbulent to viscous forces for the Reynolds number. We determine under what conditions they retain their meaning, depending on the outer velocity scale that is considered, with the help of seven boundary layer databases. We find the impressive result that if the Zagarola-Smits velocity is used as the outer velocity scale, the streamwise evolution of the three ratios of forces in the outer region can be accurately followed with these non-dimensional parameters in all these flows — not just the order of magnitude of these ratios. This cannot be achieved with three other outer velocity scales commonly used for pressure gradient turbulent boundary layers. Consequently, the three new nondimensional parameters, when expressed with the Zagarola-Smits velocity, can be used to follow — in a global sense — the streamwise evolution of the stream-wise mean momentum balance in the outer region. This study provides a clear and consistent framework for the analysis of the outer region of adverse-pressure-gradient turbulent boundary layers.


2001 ◽  
Vol 446 ◽  
pp. 271-308 ◽  
Author(s):  
M. KALTER ◽  
H. H. FERNHOLZ

This paper is an extension of an experimental investigation by Alving & Fernholz (1996). In the present experiments the effects of free-stream turbulence were investigated on a boundary layer with an adverse pressure gradient and a closed reverse-flow region. By adding free-stream turbulence the mean reverse-flow region was shortened or completely eliminated and this was used to control the size of the separation bubble. The turbulence intensity was varied between 0.2% and 6% using upstream grids while the turbulence length scale was on the order of the boundary layer thickness. Mean and fluctuating velocities as well as spectra were measured by means of hot-wire and laser-Doppler anemometry and wall shear stress by wall pulsed-wire and wall hot-wire probes.Free-stream turbulence had a small effect on the boundary layer in the mild adverse-pressure-gradient region but in the vicinity of separation and along the reverse-flow region mean velocity profiles, skin friction and turbulence structure were strongly affected. Downstream of the mean or instantaneous reverse-flow regions highly disturbed boundary layers developed in a nominally zero pressure gradient and converged to a similar turbulence structure in all three cases at the end of the test section. This state was, however, still very different from that in a canonical boundary layer.


Sign in / Sign up

Export Citation Format

Share Document