2312 Study of Phase Change Behavior of High Viscous Fluid under Sudden Decompression in a High Pressure Visualized Shock Tube experimental apparatus

2006 ◽  
Vol 2006.2 (0) ◽  
pp. 37-38
Author(s):  
Hitoshi FUJII ◽  
Yutaka ABE ◽  
Nobuyuki WAKABAYASHI
2007 ◽  
Vol 27 (Supplement1) ◽  
pp. 111-112
Author(s):  
Hitoshi FUJII ◽  
Yutaka ABE ◽  
Nobuyuki WAKABAYASHI

2021 ◽  
Vol 415 ◽  
pp. 128992
Author(s):  
Heng Wang ◽  
Yong Deng ◽  
Fuzhong Wu ◽  
Xinyi Dai ◽  
Wenhao Wang ◽  
...  

2019 ◽  
Vol 798 ◽  
pp. 342-349 ◽  
Author(s):  
Rui Zhang ◽  
Yifeng Hu ◽  
Qingqian Chou ◽  
Tianshu Lai ◽  
Xiaoqin Zhu
Keyword(s):  

1993 ◽  
Vol 48 (6) ◽  
pp. 3591-3599 ◽  
Author(s):  
M. van Thiel ◽  
F. H. Ree

2004 ◽  
Vol 126 (2) ◽  
pp. 196-203 ◽  
Author(s):  
Bumsoo Han ◽  
John C. Bischof

Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures ⩽−40°C. Moreover, in these applications, chemicals are often added to improve their outcome, which can result in significant variation in the phase change behavior and thermal properties from those of the original biomaterials. These chemical additives include cryoprotective agents (CPAs), antifreeze protein (AFP), or cryosurgical adjuvants like sodium chloride (NaCl). In the present study, phase change behavior and thermal properties of saline solutions–either water-NaCl or phosphate buffered saline (PBS)–with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight=6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes–water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures ⩽−100°C regardless of the additives, but they increase between −100°C and −30°C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present study are discussed in the context of the implications for cryobiology applications.


2017 ◽  
Author(s):  
◽  
Constantine Gregory Avgoustopoulos

This paper investigates the experimental work in Shock Driven Multiphase Instabilities (SDMI). SDMIs occur when an interface consisting of a particle seeded gas is instantaneously accelerated and begins mixing. SDMIs have similar flow morphologies to the Richtmyer-Meshkov Instability (RMI), however, the driving force inducing this flow is very different. SDMIs occur when there is a relative velocity difference between surrounding gas and the moving particles. This results to a shear at the edges and ultimately leads to rollups that are similar to a RMI. To investigate this phenomena, a shock tube facility was designed, calibrated, and tested to perform experiments. The experimental data was qualitatively compared to simulations performed, as well as to literature of similar experiments. Quantitative data was analyzed using Particle Imaging Velocimetry (PIV) to understand the flow of the instability. The flow morphologies observed in experiments have similar behavior to those performed in simulations. Additionally, the qualitative observations of experiments performed in this lab are also in agreement with experimental literature. Two different effective Atwood numbers are investigated in this study. The first case looks at a gas cylinder interface with an effective Atwood number of -0.01 and a gas Atwood number of -0.02, shocked with a Mach 1.66 shock wave. The observations show a dominating instability resulting in the gas Atwood number. What ends up happening is the smaller particles are pulled into the vortex and the large particles separate and trail behind. The second case looks at the same gas cylinder perturbation but with an effective Atwood number of 0.03 and a gas Atwood number of 0, shocked at Mach 1.66. The higher Atwood number was achieved by modifying the experimental apparatus slightly to deliver a greater number of particles to the shock tube. The experiments observed show that there is agreement with literature and simulations. Certain unusual filaments begin forming at late times, 4.0ms after shock. This was thought to only appear in a pure RMI. In the case of a SDMI, these filaments are a result of colliding particles.


2020 ◽  
Vol 10 (3) ◽  
pp. 5814-5818
Author(s):  
M. A. Aichouni ◽  
N. F. Alshammari ◽  
N. Ben Khedher ◽  
M. Aichouni

The intermittent nature of renewable energy sources such as solar and wind necessitates integration with energy-storage units to enable realistic applications. In this study, thermal performance enhancement of the finned Cylindrical Thermal Energy Storage (C-TES) with nano-enhanced Phase Change Material (PCM) integrated with the water heating system under Storage, Charging and Discharging (SCD) conditions were investigated experimentally. The effects of the addition of copper oxide (CuO) and aluminum oxide (Al2O3) nanoparticles in PCM on thermal conductivity, specific heat, and on charging and discharging performance rates were theoretically and experimentally investigated and studied in detail. The experimental apparatus utilized paraffin wax as PCM, which was filled in Finned C-TES to conduct the experiments. The experimental results showed a positive improvement compared with the non-nano additive PCM. The significance and originality of this project lies within the evaluation and identification of preferable metal-oxides with higher potential for improving thermal performance.


2013 ◽  
Vol 21 (01) ◽  
pp. 1350004 ◽  
Author(s):  
KOJI FUMOTO ◽  
TSUYOSHI KAWANAMI ◽  
TAKAO INAMURA

A cold thermal energy storage system has been developed for HVAC. There are many ice-based cooling systems operating around the world. Ice slurry, which is a mixture of fine ice crystals and liquid water, is utilized in ice storage systems owing to its good flowability and large latent heat of fusion. For slurry ice production techniques, there are presently a number of commercially available ice slurry generators (e.g., Supercooled slurry ice generator, Scraper type generator, and Vacuum type generator, etc.). In the present study, a new method was developed to generate ice slurry without the deposition of an ice layer on a cooled surface. The basic components of the experimental apparatus is a cooling brine circulating loop, a high pressure pump, a valve, an aqueous solution flow loop containing the test section, which is made of transparent acrylic, and the associated instrumentation. This new method is based on freezing-point depression of the aqueous solution, which is maintained under high-pressure conditions. To control the timing for solidification and to generate ice slurry, we investigated the relationships among the pressure and temperature of the aqueous solution. The freezing phenomenon of the aqueous solution in the test section was observed in detail. As a result, we developed a new ice slurry generator based on the new method that controls the pressure and temperature of the aqueous solution. Experimental results showed that the characteristics of the ice slurry generation were closely related to the pressure and initial stage temperature of the test fluid. Finally, the optimum operation condition of the ice slurry generator based on visualization experiment was discussed.


Sign in / Sign up

Export Citation Format

Share Document