OS0107-127 Finite Element Modeling of Representative Volume Element of Polycrystalline Aggregate

2015 ◽  
Vol 2015 (0) ◽  
pp. _OS0107-12-_OS0107-12
Author(s):  
Ikumu WATANABE ◽  
Kazuya SAITO
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Siva Bhaskara Rao Devireddy ◽  
Sandhyarani Biswas

The aim of present work is focused on the evaluation of elastic and thermal properties of unidirectional fiber-reinforced polymer composites with different volume fractions of fiber up to 0.7 using micromechanical approach. Two ways for calculating the material properties, that is, analytical and numerical approaches, were presented. In numerical approach, finite element analysis was used to evaluate the elastic modulus and thermal conductivity of composite from the constituent material properties. The finite element model based on three-dimensional micromechanical representative volume element (RVE) with a square and hexagonal packing geometry was implemented by using finite element code ANSYS. Circular cross section of fiber and square cross section of fiber were considered to develop RVE. The periodic boundary conditions are applied to the RVE to calculate elastic modulus of composite. The steady state heat transfer simulations were performed in thermal analysis to calculate thermal conductivity of composite. In analytical approach, the elastic modulus is calculated by rule of mixture, Halpin-Tsai model, and periodic microstructure. Thermal conductivity is calculated analytically by using rule of mixture, the Chawla model, and the Hashin model. The material properties obtained using finite element techniques were compared with different analytical methods and good agreement was achieved. The results are affected by a number of parameters such as volume fraction of the fibers, geometry of fiber, and RVE.


2014 ◽  
Vol 553 ◽  
pp. 22-27
Author(s):  
Ling Li ◽  
Lu Ming Shen ◽  
Gwénaëlle Proust

A texture-based representative volume element (TBRVE) model is developed for the three-dimensional crystal plasticity (CP) finite element simulations of the Bauschinger effect (BE) of polycrystalline aluminium alloy 7075 (AA7075). In the simulations, the grain morphology is created using the Voronoi tessellation method with the material texture systematically discretised from experiment. A modified CP constitutive model, which takes into account the backstress, is used to simulate the BE during cyclic loading. The model parameters are calibrated using the first cycle stress-strain curve and used to predict the mechanical response to the cyclic saturation of AA7075. The results indicate that the proposed TBRVE CP finite element model can effectively capture the BE at the grain level.


Author(s):  
Seyed Hamid Reza Sanei ◽  
Randall Doles

Abstract The aim of this study is to present a representative volume element (RVE) for nanocomposites with different microstructural features using a stochastic finite element approach. To that end, computer-simulated microstructures of nanocomposites were generated to include a variety of uncertainty present in geometry, orientation, and distribution of carbon nanotubes. Microstructures were converted into finite element models based on an image-based approach for the determination of elastic properties. For each microstructure type, 50 realizations of synthetic microstructures were generated to capture the variability as well as the average values. Computer-simulated microstructures were generated at different length scales to determine the change in mechanical properties as a function of length scale. A representative volume element is defined at a length scale beyond which no change in variability is observed. The results show that there is no universal RVE applicable to all properties and microstructures; however, the RVE size is highly dependent on microstructural features. Microstructures with agglomeration tend to require larger RVE. Similarly, random microstructures require larger RVE when compared with aligned microstructures.


Author(s):  
Bijan Mohammadi ◽  
AmirSajjad Khoddami

Solid particle erosion is one of the main failure mechanisms of a compressor blade. Thus, characterization of this damage mode is very important in life assessment of the compressor. Since experimental study of solid particle erosion needs special methods and equipment, it is necessary to develop erosion computer models. This study presents a coupled temperature–displacement finite element model to investigate damage of a compressor blade due to multiple solid particles erosion. To decrease the computational cost, a representative volume element technique is introduced to simulate simultaneous impact of multiple particles. Blade has been made of Ti-6Al-4V, a ductile titanium-based alloy, which is impacted by alumina particles. Erosion finite element modeling is assumed as a micro-scale impact problem and Johnson–Cook constitutive equations are used to describe Ti-6Al-4V erosive behavior. In regard to a wide variation range in thermal conditions all over the compressor, it is divided into three parts (first stages, middle stages, and last stages) in which each part has an average temperature. Effective parameters on erosive behavior of the blade alloy, such as impact angle, particles velocity, and particles size are studied in these three temperatures. Results show that middle stages are the most critical sites of the compressor in terms of erosion damage. An exponential relation is observed between erosion rate and particles velocity. The dependency of erosion rate on size of particles at high temperatures is indispensable.


2016 ◽  
Vol 51 (12) ◽  
pp. 1783-1794 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Mohammadi Fesharaki ◽  
Masood Mohandes

In this study, circular disk model and cylinder theory for two dimension (2D) and three dimension (3D), respectively, have been used to determine residual stresses in three-phase representative volume element. The representative volume element is consisting of three phases: carbon fiber, carbon nanotubes, and polymer matrix, that carbon fiber is reinforced by carbon nanotube using electrophoresis method. Initially, the residual stresses analysis of two-phase representative volume element has been implemented. The two-phase representative volume element has been divided to carbon fiber and matrix phases with different volume fractions. In the three-phase representative volume element, although the volume fraction of carbon fiber is constant and equal to 60%, the volume fractions of carbon nanotubes for various cases are different as 0%, 1%, 2%, 3%, 4%, and 5%. Also, there are two different methods to reinforce the fiber according to different coefficients of thermal expansion of the carbon fiber and carbon nanotube in two longitudinal and transverse directions; carbon nanotubes are placed on carbon fiber either parallel or around it like a ring. Subsequently, finite element method and circular disk model have been used for analyzing micromechanic of the residual stresses for 2D and then the results of stress invariant obtained by the finite element method have been compared with the circular disk model. Moreover, for 3D model, the finite element method and cylinder theory have been utilized for micromechanical analysis of the residual stresses and the results of stress invariant obtained by them, have been compared with each other. Results of the finite element method and analytical model have good agreement in 2D and 3D models.


2020 ◽  
Vol 42 (4) ◽  
pp. 427-434
Author(s):  
Duc-Chinh Pham

Our major new results and the previous ones on the bounds for elastic random polycrystals, and most advanced 3D finite element results for random 3D Voronoi polycrystals are resumed and analysed (together for the first time). Recently obtained numerical Dirichlet and Neumann simulation results for the effective elastic moduli of a large 10000-grain-size random Voronoi polycrystal representative volume element (RVE) for a number of triclinic and monoclinic base crystals (Mursheda and Ranganathan, 2017) are compared critically with the bounds on the moduli. Though major parts within the simulation results fall within the bounds of Pham (2011), some Dirichlet upper estimates still lie outside the bounds. Many more RVEs are needed to represent the Voronoi polycrystal on the same RVE-size-level, and larger RVEs are needed for checking the convergence and comparisons with the bounds.


Author(s):  
Armin Kianfar ◽  
Mir Masoud Seyyed Fakhrabadi ◽  
Mahmoud Mosavi Mashhadi

This paper presents three-dimensional finite element modeling of nanocomposite materials made from polyethylene polymer reinforced by coiled carbon nanotubes. A method of Python scripting was used to generate representative volume elements in order to determine the mechanical behavior in elastic and plastic zones as well as effective thermal conductivity using the finite element software. The properties of the nanocomposites are investigated by considering the interphase zone between carbon nanofillers and matrix. The effects of different volume fractions, geometrical parameters, and orientations of the nanofillers on the elastic and thermal characteristics of the nanocomposites are studied considering both cohesive interaction and perfect bonding between the fillers and matrix. Moreover, the effects of applying strain on the effective thermal conductivity of the representative volume elements are analyzed. The results reveal that both stress–strain curves and thermal conductivity coefficients of the nanocomposites are following similar trends vs. the changes of the volume fractions as well as the geometries and orientations of the coiled carbon nanotubes. Analysis of the tensile toughness of all samples reveals that it is affected by both stress and the number of fillers in the representative volume element. In addition, thermal-displacement analysis shows that thermal conductivity coefficient decreases by increasing the applied strain on the representative volume element, while the intensity of decrease of the nanocomposite thermal conductivity depends on the volume fraction and interaction of the nanofillers and interphase zone. Finally, crashworthiness analysis of the nanocomposite material proves that they are appropriate candidates for absorbing energy under impact loadings in comparison to metals.


Sign in / Sign up

Export Citation Format

Share Document