Study on CFRP-Aluminum adhesive bonding using adhesives with ceramic particles

2019 ◽  
Vol 2019 (0) ◽  
pp. OS2113
Author(s):  
Yoshiaki Nakayama ◽  
Tessei KURASHIKI ◽  
Kazutaka MUKOYAMA ◽  
Koushu HANAKI ◽  
Xingsheng LI
Author(s):  
Julie A. Martini ◽  
Robert H. Doremus

Tracy and Doremus have demonstrated chemical bonding between bone and hydroxylapatite with transmission electron microscopy. Now researchers ponder how to improve upon this bond in turn improving the life expectancy and biocompatibility of implantable orthopedic devices.This report focuses on a study of the- chemical influences on the interfacial integrity and strength. Pure hydroxylapatite (HAP), magnesium doped HAP, strontium doped HAP, bioglass and medical grade titanium cylinders were implanted into the tibial cortices of New Zealand white rabbits. After 12 weeks, the implants were retrieved for a scanning electron microscopy study coupled with energy dispersive spectroscopy.Following sacrifice and careful retrieval, the samples were dehydrated through a graduated series starting with 50% ethanol and continuing through 60, 70, 80, 90, 95, and 100% ethanol over a period of two days. The samples were embedded in LR White. Again a graduated series was used with solutions of 50, 75 and 100% LR White diluted in ethanol.


2000 ◽  
Vol 27 (12) ◽  
pp. 1054-1059 ◽  
Author(s):  
H. Matsumura ◽  
N. Tanoue ◽  
M. Atsuta

2010 ◽  
Vol 25 (7) ◽  
pp. 770-774 ◽  
Author(s):  
Hui-Jie ZHANG ◽  
Xiang-Dong ZHU ◽  
Xin-Long WANG ◽  
Hong-Song FAN ◽  
Xing-Dong ZHANG

Authorea ◽  
2020 ◽  
Author(s):  
Ricardo Maciel ◽  
Tiago Bento ◽  
Daniel F O Braga ◽  
Lucas da Silva ◽  
Pedro Moreira ◽  
...  

2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sadik Omairey ◽  
Nithin Jayasree ◽  
Mihalis Kazilas

AbstractThe increasing use of fibre reinforced polymer composite materials in a wide range of applications increases the use of similar and dissimilar joints. Traditional joining methods such as welding, mechanical fastening and riveting are challenging in composites due to their material properties, heterogeneous nature, and layup configuration. Adhesive bonding allows flexibility in materials selection and offers improved production efficiency from product design and manufacture to final assembly, enabling cost reduction. However, the performance of adhesively bonded composite structures cannot be fully verified by inspection and testing due to the unforeseen nature of defects and manufacturing uncertainties presented in this joining method. These uncertainties can manifest as kissing bonds, porosity and voids in the adhesive. As a result, the use of adhesively bonded joints is often constrained by conservative certification requirements, limiting the potential of composite materials in weight reduction, cost-saving, and performance. There is a need to identify these uncertainties and understand their effect when designing these adhesively bonded joints. This article aims to report and categorise these uncertainties, offering the reader a reliable and inclusive source to conduct further research, such as the development of probabilistic reliability-based design optimisation, sensitivity analysis, defect detection methods and process development.


Sign in / Sign up

Export Citation Format

Share Document