Study on Ductile Mode Grinding of Optical Glass with Diamond Wheel : influence of grinding Conditoin on Ductile Mode Grinding

2000 ◽  
Vol 2000.2 (0) ◽  
pp. 215-216
Author(s):  
Makoto KURUSU ◽  
Tomoyuki KAWASITA ◽  
Hiroshi NAKAZONO ◽  
Heiji YASUI
2006 ◽  
Vol 315-316 ◽  
pp. 536-540 ◽  
Author(s):  
Ming Zhou ◽  
X.D. Liu ◽  
S.N. Huang

The development of the capability to machine glass materials to optical quality is highly desirable. In this work, the deformation characteristics of brittle materials were analyzed by micro and nano indentations. Diamond cutting of optical glass BK7 was performed in order to investigate the tool wear mechanism in machining of brittle materials and the effect of tool vibration on material removal mechanism. The tool wear mechanism was discussed on the basis of the observation of wear zone. Ductile-mode cutting has easily been achieved with the application of ultrasonic vibration during cutting of glass. It was confirmed experimentally that the tool wear and surface finish were improved significantly by applying ultrasonic vibration to the cutting tool.


2008 ◽  
Vol 375-376 ◽  
pp. 211-215 ◽  
Author(s):  
Hang Zhao ◽  
Ming Zhou

Optical glass is one of the most difficult-to-cut brittle materials due to its high brittleness and high hardness. In this work, an experimental study was conducted to diamond-cut glass SF6 in ductile mode. Nano-indentation analysis was performed for understanding the material deformation behavior in practical cutting process. The effect of process conditions, i.e. conventional turning and ultrasonic vibration assisted cutting, on the tool wear and surface quality was discussed based on the observations of the tool wear zone microstructure and the machined surface topography. The investigation presents the feasibility of achieving optical quality surfaces on glass with the application of ultrasonic vibration cutting technology. The tool life and surface finish were improved significantly by applying ultrasonic vibration to the cutting tool.


2010 ◽  
Vol 102-104 ◽  
pp. 738-741
Author(s):  
Hai Zhou ◽  
Li Gang Bai ◽  
Dai Pin Wang

This paper proposed a new approach to control the micro-quality of sapphire substrate, in order to grow GaN on substrate. The main factors that influence macro-quality are the method of slicing, grinding and polishing. Thread speed of slicing is less than 0.5m/s. Ductile mode grinding of substrate is achieved by #3000 diamond wheel and feed of 1μm/r. The suitable polishing conditions are that the SiO2 grain size is less than 10nm, the concentration SiO2 is 3%, pH value of polishing liquid is 10.5 and polishing stress is 190Pa. The undamaged substrates have been obtained steadily. The surface roughness RMS is less than 0.4 nm.


2005 ◽  
Vol 291-292 ◽  
pp. 57-62
Author(s):  
Kiyoshi Suzuki ◽  
Manabu Iwai ◽  
Shinichi Ninomiya ◽  
Keizo Takeuchi ◽  
Katsutoshi Tanaka ◽  
...  

Electrically conductive cutting edges diamond grinding wheels (EC-cutting edges D wheels) have properties such as, 1) convenient precise forming by EDM, 2) realization of high cutting edge density, 3) sufficiently large chip pockets along with fine cutting edges on large diamond grits, 4) contact sensing of the cutting edges with workpiece due to electrical conductivity, 5) expected application to the grinding of various types of steels due to high thermal resistance. Until now, the grinding ability of the sharp edges generated on the electrically conductive CVD diamond thick film wheel by electrodischarge trueing (ED trueing) was confirmed by grinding experiments using a small diameter lapping wheel and a small diameter disk wheel. In this research work, metal bonded diamond wheels containing boron doped electrically conductive diamond (EC diamond) grits, which possess high oxidation temperature, were trial manufactured. From the results of grinding test for an optical glass (BK7), it was found that the wear and grinding force for the EC diamond grits wheel were significantly low compared to a conventional diamond grits wheel. Furthermore, from the results of the investigation on ED trueing performance, a high trueing efficiency along with the possibility of cutting edge tip formation was confirmed.


Author(s):  
Heiji Yasui ◽  
Yutaka Hiraki ◽  
Masato Sakata ◽  
Michiko Tsurusaki ◽  
Yasuyuki Murayama ◽  
...  

2007 ◽  
Vol 364-366 ◽  
pp. 578-583 ◽  
Author(s):  
Qing Liang Zhao ◽  
Ekkard Brinksmeier ◽  
Otmann Riemer ◽  
Kai Rickens

In order to realize ductile machining of optical glasses using mono-layer nickel electroplated coarse-grained diamond grinding wheel, a novel conditioning technique features using a copper bonded diamond grinding wheels of 15m grain size dressed by ELID (electrolytic inprocess dressing) to condition the 46m grain sized diamond wheel has been developed. During the conditioning process, a force transducer was used to monitor the conditioning force, a coaxial optical distance measurement system was used to in-situ monitor the modified wheel surface status. White-light interferometry (WLI), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the conditioned wheel surface status as well as the ground optical glass surface topography correspondingly. The experimental result indicates that a minimized wheel radial run-out error of less than 2μm as well as the top-flattened diamond grains of constant wheel peripheral envelop profile were generated on a 5-axis ultra-precision machine tool. The grinding experiment proved that the well conditioned 46μm coarse-grained diamond wheel can be used in realizing the ductile grinding of optical glass BK7, which indicates that the newly developed conditioning technique is feasible and applicable to introduce the coarse-grained diamond wheels into precision machining of brittle and hard-to-machine materials.


Sign in / Sign up

Export Citation Format

Share Document