1A1-L02 The IDCS control of industrial robots using inertial identification based on contact force sensor(New Control Theory and Motion Control)

2011 ◽  
Vol 2011 (0) ◽  
pp. _1A1-L02_1-_1A1-L02_4
Author(s):  
Kengo AOKI ◽  
Gentiane VENTURE ◽  
Yasutaka TAGAWA
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Alejandro GutierreznGiles ◽  
Luis U. EvangelistanHernandez ◽  
Marco A. Arteaga ◽  
Carlos A. CruznVillar ◽  
Alejandro RodrigueznAngeles

Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 59
Author(s):  
Junjie Dai ◽  
Chin-Yin Chen ◽  
Renfeng Zhu ◽  
Guilin Yang ◽  
Chongchong Wang ◽  
...  

Installing force-controlled end-effectors on the end of industrial robots has become the mainstream method for robot force control. Additionally, during the polishing process, contact force stability has an important impact on polishing quality. However, due to the difference between the robot structure and the force-controlled end-effector, in the polishing operation, direct force control will have impact during the transition from noncontact to contact between the tool and the workpiece. Although impedance control can solve this problem, industrial robots still produce vibrations with high inertia and low stiffness. Therefore, this research proposes an impedance matching control strategy based on traditional direct force control and impedance control methods to improve this problem. This method’s primary purpose is to avoid force vibration in the contact phase and maintain force–tracking performance during the dynamic tracking phase. Simulation and experimental results show that this method can smoothly track the contact force and reduce vibration compared with traditional force control and impedance control.


2021 ◽  
Author(s):  
Zhang Jing-Jing ◽  
Liu Jia ◽  
Yang Sheng-Qiang ◽  
Qiao Zhi-Jie ◽  
Li Jing-Zheng

2013 ◽  
Vol 433-435 ◽  
pp. 117-120
Author(s):  
Fei Tao ◽  
Ping An Mu ◽  
Shu Guang Dai

This paper puts forward a method to control the industrial robots based on the NI Corporations LabVIEW virtual instrument technology. By designing the communication protocol between the LabVIEW software program on PC and industrial robots, the LabVIEW program can take the control of industrial robots by using RS232 serial ports, including the operation instructions' transmission, the feedback of the robots' running, and the data exchange between the two. The result shows that can effectively realize the motion control of industrial robots based on LabVIEW.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6042
Author(s):  
Zhijian Zhang ◽  
Youping Chen ◽  
Dailin Zhang

In robot teaching for contact tasks, it is necessary to not only accurately perceive the traction force exerted by hands, but also to perceive the contact force at the robot end. This paper develops a tandem force sensor to detect traction and contact forces. As a component of the tandem force sensor, a cylindrical traction force sensor is developed to detect the traction force applied by hands. Its structure is designed to be suitable for humans to operate, and the mechanical model of its cylinder-shaped elastic structural body has been analyzed. After calibration, the cylindrical traction force sensor is proven to be able to detect forces/moments with small errors. Then, a tandem force sensor is developed based on the developed cylindrical traction force sensor and a wrist force sensor. The robot teaching experiment of drawer switches were made and the results confirm that the developed traction force sensor is simple to operate and the tandem force sensor can achieve the perception of the traction and contact forces.


Sign in / Sign up

Export Citation Format

Share Document