scholarly journals Development and Application of a Tandem Force Sensor

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6042
Author(s):  
Zhijian Zhang ◽  
Youping Chen ◽  
Dailin Zhang

In robot teaching for contact tasks, it is necessary to not only accurately perceive the traction force exerted by hands, but also to perceive the contact force at the robot end. This paper develops a tandem force sensor to detect traction and contact forces. As a component of the tandem force sensor, a cylindrical traction force sensor is developed to detect the traction force applied by hands. Its structure is designed to be suitable for humans to operate, and the mechanical model of its cylinder-shaped elastic structural body has been analyzed. After calibration, the cylindrical traction force sensor is proven to be able to detect forces/moments with small errors. Then, a tandem force sensor is developed based on the developed cylindrical traction force sensor and a wrist force sensor. The robot teaching experiment of drawer switches were made and the results confirm that the developed traction force sensor is simple to operate and the tandem force sensor can achieve the perception of the traction and contact forces.

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Joshua D. Roth ◽  
Stephen M. Howell ◽  
Maury L. Hull

Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension–compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.


2021 ◽  
Vol 10 (14) ◽  
pp. 3083
Author(s):  
Claudio Zippenfennig ◽  
Bert Wynands ◽  
Thomas L. Milani

Determining vibration perception thresholds (VPT) is a central concern of clinical research and science to assess the somatosensory capacity of humans. The response of different mechanoreceptors to an increasing contact force has rarely been studied. We hypothesize that increasing contact force leads to a decrease in VPTs of fast-adapting mechanoreceptors in the sole of the human foot. VPTs of 10 healthy subjects were measured at 30 Hz and 200 Hz at the heel of the right foot using a vibration exciter. Contact forces were adjusted precisely between 0.3 N–9.6 N through an integrated force sensor. Significant main effects were found for frequency and contact force. Furthermore, there was a significant interaction for frequency and contact force, meaning that the influence of an increasing contact force was more obvious for the 30 Hz condition. We presume that the principles of contrast enhancement and spatial summation are valid in Meissner and Pacinian corpuscles, respectively. In addition to spatial summation, we presume an effect on Pacinian corpuscles due to their presence in the periosteum or interosseous membrane.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Yasuo Okumura ◽  
Benhur D Henz ◽  
Susa B Johnson ◽  
Douglas L Packer

Background: Current technologies to fully “register” surrogate maps onto 3D CT (CartoMerge, NavxMerge) or 3D ICE images (CartoSound) have emerged to guide ablation. The feasibility of navigation with the Hansen Robotic Catheter Sheath System (HRCS) has also been reported. Integrated 3D Image and contact force sensor with this robotic system may allow for feasibility and safety for guiding complex anatomic-based ablation. Methods: Circumferential pulmonary vein (PV) ablation with the robotic system guided by integrated 3D images (CartoMerge, NavxMerge or CartoSound) (n=3), were done and compared to manual manipulation guided by the integrated 3D images (CartoSound) (n=8). Each ablation was performed using contact force ranges of 10 –20 grams (20W, 17 ml/min flow, 30 seconds). Accuracy of PV ablation was assessed by comparing distance from the PV ostia (specific 4 sites) to the ablative points on the 3D image structures, and the corresponding distances of the actual ablative lesions at pathologic exam. Results: Using three integrated 3D image systems, circumferential PV ablation was successfully guided in 6 PVs (3 RSPVs and 3 LSPVs) with the robotic system. During all ablations with contact forces of 10 –20 grams, no impedance rises, pops or type 2 microbubbles were seen. Accuracy of the PV ablation was 0.22±0.84 mm (range 0 –2). The PV rings were 100% circumferential by electroanatomic mapping, yielding an 86±7% (range 80 –98%) uninterrupted circumferential ablative ring around each PV with 1.1 ± 0.4 gaps (3.0 ± 0.9 mm). These resulting parameters were equal to those in the integrated 3D image-based manual navigation (Accuracy: 0.5±0.9 (range 0 –2.5) mm, Gaps:1.3 ± 0.9 ( 2.6 ± 0.9 mm), circumferential lesions 88 ± 10% (range 70 –100). Conclusions: This feasibility study demonstrated successful integrated 3D image and contact force-guided robotic ablation. Contact sensor guided 3D volume construction and real time 3D images accurately replicated atrial and venous anatomy, resulting in successful circumferential ablation.


2021 ◽  
Author(s):  
Markku Suomalainen ◽  
Fares J. Abu-dakka ◽  
Ville Kyrki

AbstractWe present a novel method for learning from demonstration 6-D tasks that can be modeled as a sequence of linear motions and compliances. The focus of this paper is the learning of a single linear primitive, many of which can be sequenced to perform more complex tasks. The presented method learns from demonstrations how to take advantage of mechanical gradients in in-contact tasks, such as assembly, both for translations and rotations, without any prior information. The method assumes there exists a desired linear direction in 6-D which, if followed by the manipulator, leads the robot’s end-effector to the goal area shown in the demonstration, either in free space or by leveraging contact through compliance. First, demonstrations are gathered where the teacher explicitly shows the robot how the mechanical gradients can be used as guidance towards the goal. From the demonstrations, a set of directions is computed which would result in the observed motion at each timestep during a demonstration of a single primitive. By observing which direction is included in all these sets, we find a single desired direction which can reproduce the demonstrated motion. Finding the number of compliant axes and their directions in both rotation and translation is based on the assumption that in the presence of a desired direction of motion, all other observed motion is caused by the contact force of the environment, signalling the need for compliance. We evaluate the method on a KUKA LWR4+ robot with test setups imitating typical tasks where a human would use compliance to cope with positional uncertainty. Results show that the method can successfully learn and reproduce compliant motions by taking advantage of the geometry of the task, therefore reducing the need for localization accuracy.


2021 ◽  
Vol 11 (2) ◽  
pp. 466
Author(s):  
Włodzimierz Kęska ◽  
Jacek Marcinkiewicz ◽  
Łukasz Gierz ◽  
Żaneta Staszak ◽  
Jarosław Selech ◽  
...  

The continuous development of computer technology has made it applicable in many scientific fields, including research into a wide range of processes in agricultural machines. It allows the simulation of very complex physical phenomena, including grain motion. A recently discovered discrete element method (DEM) is used for this purpose. It involves direct integration of equations of grain system motion under the action of various forces, the most important of which are contact forces. The method’s accuracy depends mainly on precisely developed mathematical models of contacts. The creation of such models requires empirical validation, an experiment that investigates the course of contact forces at the moment of the impact of the grains. To achieve this, specialised test stations equipped with force and speed sensors were developed. The correct selection of testing equipment and interpretation of results play a decisive role in this type of research. This paper focuses on the evaluation of the force sensor dynamic properties’ influence on the measurement accuracy of the course of the plant grain impact forces against a stiff surface. The issue was examined using the computer simulation method. A proprietary computer software with the main calculation module and data input procedures, which presents results in a graphic form, was used for calculations. From the simulation, graphs of the contact force and force signal from the sensor were obtained. This helped to clearly indicate the essence of the correct selection of parameters used in the tests of sensors, which should be characterised by high resonance frequency.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Author(s):  
Di Su ◽  
Yuichiro Tanaka ◽  
Tomonori Nagayama

<p>Expansion joints on bridges should accommodate cyclic movements to minimize imposition of secondary stresses in the structure. However, these joints are highly susceptible to severe and repeated vehicular impact that results their inherent discontinuity. In this paper, a portable on- board system including accelerometers and a drive recorder to evaluate the vehicular contact force on bridge joints is proposed. First, from the acceleration responses of the vehicle, the contact force exerted on the road surface is estimated from a half-car model by Kalman Filter. Next, extraction of the expansion joints is performed by object detection from videos taken by the drive recorder. Finally, a relative comparison of the contact forces acting on joints is performed, with location identification on the map. The proposed system benefits to utilize the dynamic contact forces results from on-board system to detect the potential risky joints more precisely and efficiently.</p>


2015 ◽  
Vol 105 (06) ◽  
pp. 377-383
Author(s):  
F. Klocke ◽  
R. Brocker ◽  
F. Vits ◽  
P. Mattfeld

Beim Vibrationsgleitschleifen wird der Werkstoffabtrag maßgeblich durch die vorherrschenden Kontaktkräfte zwischen dem Werkstück und den Schleifkörpern bestimmt. Dieser Fachartikel stellt ein Messsystem vor, mit dem die messtechnische Erfassung der Kontaktkräfte beim ungeführten Vibrationsgleitschleifen möglich ist. Ein Alleinstellungsmerkmal ist dabei die vollständig kabellose Ausführung des Messsystems. Somit wurden die Messergebnisse nicht durch Kabel beeinflusst, die üblicherweise für die Energieversorgung und Datenübertragung notwendig sind. Mithilfe dieses Messsystems wurde der Einfluss folgender Prozesseingangsgrößen systematisch untersucht: Schleifkörpergröße, Unwuchtmotordrehzahl, Versatzwinkel der Unwuchtgewichte sowie die Masse des unteren und oberen Unwuchtgewichts auf die Kontaktkräfte. &nbsp; In vibratory finishing the material removal is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is able to measure contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction so that the measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight on the contact forces was investigated.


Author(s):  
Jiun-Ru Chen ◽  
Wei-En Chen ◽  
CH Liu ◽  
Yin-Tien Wang ◽  
CB Lin ◽  
...  

A procedure for inverse kinetic analysis on two hard fingers grasping a hard sphere is proposed in this study. Contact forces may be found for given linear and angular accelerations of a spherical body. Elastic force-displacement relations predicted by Hertz contact theory are used to remove the indeterminancy produced by rigid body modelling. Two types of inverse kinetic analysis may be dealt with. Firstly, as the fingers impose a given tightening displacement on the body, and carry it to move with known accelerations, corresponding grasping forces may be determined by a numerical procedure. In this procedure one contact force may be chosen as the principal unknown, and all other contact forces are expressed in terms of this force. The numerical procedure is hence very efficient since it deals with a problem with only one unknown. The solution procedure eliminates slipping thus only nonslip solutions, if they exist, are found. Secondly, when the body is moving with known accelerations, if the grasping direction of the two fingers is also known, then the minimum tightening displacement required for non-sliding grasping may be obtained in closed form. In short, the proposed technique deals with a grasping system that has accelerations, and in this study the authors show that indeterminancy may be used to reduce the complexity of the problem.


1997 ◽  
Vol 13 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Franck Quaine ◽  
Luc Martin ◽  
Jean-Pierre Blanchi

This manuscript describes three-dimensional force data collected during postural shifts performed by individuals simulating rock-climbing skills. Starting from a quadrupedal vertical posture, 6 expert climbers had to release their right-hand holds and maintain the tripedal posture for a few seconds. The vertical and contact forces (lateral and anteroposterior forces) applied on the holds were analyzed in two positions: an “imposed” position (the trunk far from the supporting wall) and an “optimized” position (the trunk close to the wall and lower contact forces at the holds). The tripedal postures performed in the two positions were achieved by the same pattern of vertical and contact forces exerted by the limbs on the holds. In the optimized position, the transfer of the forces was less extensive than in the imposed position, so that the forces were exerted primarily on the ipsilateral hold. Moreover, a link between the contact force values and the couple due to body weight with respect to the feet was shown.


Sign in / Sign up

Export Citation Format

Share Document