1P1-A01 Construction of High-Speed Thermal Display System using Warm Water and Cold Water(Tactile and Force Sensing(3))

2012 ◽  
Vol 2012 (0) ◽  
pp. _1P1-A01_1-_1P1-A01_3 ◽  
Author(s):  
Masamichi SAKAGUCHI ◽  
Hiroyuki OBATA ◽  
Shunsuke SHIMIZU
2020 ◽  
Vol 642 ◽  
pp. 133-146
Author(s):  
PC González-Espinosa ◽  
SD Donner

Warm-water growth and survival of corals are constrained by a set of environmental conditions such as temperature, light, nutrient levels and salinity. Water temperatures of 1 to 2°C above the usual summer maximum can trigger a phenomenon known as coral bleaching, whereby disruption of the symbiosis between coral and dinoflagellate micro-algae, living within the coral tissue, reveals the white skeleton of coral. Anomalously cold water can also lead to coral bleaching but has been the subject of limited research. Although cold-water bleaching events are less common, they can produce similar impacts on coral reefs as warm-water events. In this study, we explored the effect of temperature and light on the likelihood of cold-water coral bleaching from 1998-2017 using available bleaching observations from the Eastern Tropical Pacific and the Florida Keys. Using satellite-derived sea surface temperature, photosynthetically available radiation and light attenuation data, cold temperature and light exposure metrics were developed and then tested against the bleaching observations using logistic regression. The results show that cold-water bleaching can be best predicted with an accumulated cold-temperature metric, i.e. ‘degree cooling weeks’, analogous to the heat stress metric ‘degree heating weeks’, with high accuracy (90%) and fewer Type I and Type II errors in comparison with other models. Although light, when also considered, improved prediction accuracy, we found that the most reliable framework for cold-water bleaching prediction may be based solely on cold-temperature exposure.


2016 ◽  
Vol 13 (1) ◽  
pp. 55-76 ◽  
Author(s):  
Yunwen Tao ◽  
Wenli Zou ◽  
Junteng Jia ◽  
Wei Li ◽  
Dieter Cremer

SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Roberto Fernando Leuchtenberger ◽  
Jorge Luiz Biazussi ◽  
William Monte Verde ◽  
Marcelo de Souza Castro ◽  
Antonio Carlos Bannwart

Summary Production shutdowns occur often throughout the life cycle of an oil field. In offshore fields, shutdown situations are accompanied by an intense heat exchange between pipeline and cold water, which exponentially increases oil viscosity. Such an event may lead to serious difficulty to restart the production, or even render it unfeasible, especially for heavy oil fields. Therefore, a preventive procedure is required to remove the ultraviscous oil from pipelines and risers; for example, by pumping diesel or methanol in a flush procedure. Designing an efficient cleanup procedure is therefore essential in terms of time, amount of fluid injected, and pumping system requirements. However, the amount of research published in this area is limited. In this paper, we propose a comprehensive analysis on how the displacement of a viscous liquid by a less-viscous liquid occurs in a pipeline through footages in different segments, varying the injection velocity. Two mineral oils with different viscosities and tap water were used as working fluids for this study. The experimental setup was built with a horizontal 10-m-long acrylic pipe with 19-mm internal diameter. Two high-speed cameras were placed both in the inlet and outlet segments. Our results demonstrate how water displaces viscous oil in a pipeline, showing different flow configurations as superficial water velocity increases, depending on the oil viscosity and distance from the inlet. A dimensionless analysis was performed by a combination of the forces that govern the flow and dimensionless groups found in literature. The results show an expected area of optimum values regarding cleaning time according to flow configuration. A unidimensional model using a logistic function was proposed and showed a good agreement with the experimental data. The model itself proven to be an easy tool for industry and academic purposes, supporting even more robust and elaborated models in the future. NOTE: Supplemental material is available with this paper and is available online under the Supplementary Data heading at https://doi.org/10.2118/205356-PA.


2017 ◽  
Vol 6 (2) ◽  
pp. 82
Author(s):  
Sean X. Liu ◽  
Diejun Chen ◽  
George E. Inglett ◽  
Jingyuan Xu

Amaranth-oat composites were developed using gluten free amaranth flour containing essential amino acids and minerals with oat products containing β-glucan, known for lowering blood cholesterol. Amaranth flour and oat bran concentrate (OBC) composites (1:4) were processed using different technologies, including dry mixing, baking, steaming, cold wet blending, and high speed homogenizing (Polytron PT6000) with cold water or hot water. The results showed that water holding capacities, pasting, and rheological properties were dramatically increased by wet blending, Polytron with cold water, and Polytron with hot water followed by drum drying. The processing procedures created dissimilar physical properties that will enhance the application of ancient grains and oat for functional foods that are suitable for people who are gluten-intolerant. In addition, the dietary fiber contents of composites were increased by the incorporation of OBC. The composites can be inexpensively prepared and processed. The new healthful products will be affordable for people who suffer from celiac disease or gluten-intolerant. These innovative gluten-free functional food products will help millions of gluten sensitive consumers enjoy heart-healthy functional foods.


1973 ◽  
Vol 133 (4) ◽  
pp. 735-738 ◽  
Author(s):  
Ian A. Johnston ◽  
Neil Frearson ◽  
Geoffrey Goldspink

1. Myofibrillar adenosine triphosphatase (ATPase) activities were measured for white myotomal muscle of 19 species of fish. 2. The activity was measured at different temperatures and after periods of preincubation at 37°C. 3. The inactivation half-life at 37°C depended on environmental temperature, increasing as the temperature increased. 4. Cold-water fish had higher myofibrillar adenosine triphosphatase activity at low temperatures than had warm-water fish. 5. The significance of these results is discussed.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Mark Ayzenberg ◽  
Michael Narvaez ◽  
James Raphael

Casting is routinely used for acute andpost-operative immobilization and remains a cornerstone in the non-operative management of fractures and deformities. Theapplication of a properly fitted and well-molded cast, especially for a trainee, can bechallenging. We present a simple method ofprolonging cure time of fiberglass cast — placing ice in the dip water. Eight-ply, five-inch fiberglass cast was circumferentially applied to an aluminum-wrapped cardboard cylinder. An electronic, 2-channel temperature sensor (TR-71wf Temp Logger, T&D Corporation, Matsumoto, Japan), accurateto 0.1ºC and accurate to ±0.3ºC, was placed between the fourth and fifth layers of fiberglass. Thirty total casts were tested using 9±1ºC (cold), 22±1ºC (ambient), and 36±1ºC (warm) dip water. Room temperature was maintained at 24±1ºC. Cast temperatures were measured during theexothermic reaction generated by the castcuring. Peak temperatures and cure timeswere recorded. Cure time was defined as the point of downward deflection on the time-temperature curve immediately after peak. Cure and peak temperatures were compared among groups using analysis of variance. Mean cure time was 3.5±0.1 minutes forwarm water, 5.0±0.4 minutes for ambient water and 7.0±0.5 minutes for cold water. Peak temperature, measured between layers 4 and 5 of the cast material, was 36.6±0.8ºC for warm water, 31.1±1.4ºC for ambient water and 25.2±0.5ºC for cold water. Cold afforded, on average, an additional 2 minutes (40% increase) in cure time compared to ambient water and an additional 3.5 minutes (100% increase) compared to warm water. Cure time differences were significant (P<0.001) for all groups, as were peak temperature differences (P<0.001). Temperatures concerning for development of burns were never reached. Utilizing iceddip water when casting is a simple andeffective method to prolong the time available for cast application. Orthopedic residents and trainees may find this useful in learning to fabricate a high quality cast. For the experienced orthopedic surgeon, this method eliminates the need to bridge long-limb casts and facilitates the application of complex casts.


2020 ◽  
Vol 45 (7) ◽  
pp. 563-572
Author(s):  
Kristen E Kay ◽  
Laura E Martin ◽  
Kimberly F James ◽  
Sashel M Haygood ◽  
Ann-Marie Torregrossa

Abstract Increasing evidence suggests that stimulus temperature modifies taste signaling. However, understanding how temperature modifies taste-driven behavior is difficult to separate as we must first understand how temperature alone modifies behavior. Previous work has suggested that cold water is more rewarding and “satiating” than warm water, and water above orolingual temperature is avoided in brief-access testing. We explored the strength of cold water preference and warm water avoidance by asking: (1) if cold temperature alone was sufficient to condition a flavor preference and (2) if avoidance of warm stimuli is driven by novelty. We addressed these questions using custom-designed equipment that allows us to monitor and maintain solution temperatures. We conducted two-bottle preference tests, after pairing Kool-Aid flavors with 10 or 40 °C. Rats preferred the flavor paired with cold temperature, both while it was cold and for 1 day while solutions were presented at 22 °C. We then examined the role of novelty in avoidance of 40 °C. Rats were maintained on 10, 22, or 40 °C water in their home cage to increase familiarity with the temperatures. Rats were then subject to a series of brief-access taste tests to water or sucrose at 10 to 40 °C. Rats that had 40 °C experience licked more to 40 °C water, but not sucrose, during brief-access testing. In a series of two-bottle preference tests, rats maintained on 40 °C water had a decreased preference for 10 °C water when paired opposite 40 °C water. Together, these data contribute to our understanding of orosensory-driven behavior with water at different temperatures.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Dongxing Wang ◽  
Yan Liu ◽  
Zimu Zhang ◽  
Pin Shao ◽  
Ting’an Zhang

Average diameter of bubbles is important in copper furnace. Based on the principle of similarity, a slice water model of a furnace with bottom-blown oxygen in matte-smelting process was established. A high-speed camera was used to record images continuously and clearer pictures were selected for treatment. Finally, image processing software was used for obtaining the average diameter of the bubbles. The effects of different injection conditions and equipment factors such as the diameter of nozzle, the nozzle installing angle, and gas velocity on the average diameter of bubbles were studied with cold water model experiment, exploring the dispersion and disintegration rules of bubbles. According to experimental data and Buckingham’s theorem, by using dimensional analysis method, an empirical formula on average diameter of bubbles was established (dB=0.41666d0.29374θ-0.46572v-0.16725). It can be seen from the formula that nozzle installing angle and diameter of nozzle make the most impact on the average diameter of bubbles in bottom blown oxygen copper furnace.


Sign in / Sign up

Export Citation Format

Share Document