2A1-E03 IDCS based controller for industrial robots with a flexible arm(Flexible Robot/Mechanism and its Control)

2012 ◽  
Vol 2012 (0) ◽  
pp. _2A1-E03_1-_2A1-E03_4
Author(s):  
Kengo AOKI ◽  
Gentiane VENTURE ◽  
Yasutaka TAGAWA
1994 ◽  
Vol 116 (4) ◽  
pp. 792-795 ◽  
Author(s):  
Kazuhiko Takahashi ◽  
Ichiro Yamada

This paper shows the effectiveness of a neural-network controller for controlling a flexible mechanism such as a flexible robot arm. An adaptive-type direct neural controller is formulated using state-space representation of the dynamics of the target system. The characteristics of the controller are experimentally investigated by using it to control the tip angular position of a single-link flexible arm.


1990 ◽  
Vol 2 (2) ◽  
pp. 83-90
Author(s):  
Hiroyuki Kojima ◽  

In this paper, a finite element formulation method for a horizontal flexible robot arm with two links is first presented. In the analysis, the kinetic energy of the flexible arm is represented in brief compared with previous methods, and the matrix equation of motion in consideration of the nonlinear forces, such as the Coriolis force, is derived by the finite element method and the variational theorem. Then, the state equation of the mechatronics system consisting of the flexible arm and the position control system is obtained. Secondly, numerical simulations in the case of applying path control based on the trapezoidal velocity curve are carried out by use of the Wilson-<I>θ</I> method, and the effects of the bending rigidity and the shape of the trapezoidal velocity curve on the dynamic characteristics of the mechatronics system are demonstrated.


1986 ◽  
Vol 108 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Nabil G. Chalhoub ◽  
A. Galip Ulsoy

High performance requirements in robotics have led to the consideration of structural flexibilty in robot arms. This paper employs an assumed modes method to model the flexible motion of the last link of a spherical coordinate robot arm. The model, which includes the non backdrivability of the leadscrews, is used to investigate relationships between the arm structural flexibility and a linear controller for the rigid body motion. This simple controller is used to simulate the controllers currently used in industrial robots. The simulation results illustrate the differences between leadscrew driven and unconstrained axes of the robot; they indicate the trade-off between speed and accuracy; and show potential instability mechanisms due to the interaction between the controller and the robot structural flexibility.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 576 ◽  
Author(s):  
Gaoyang Pang ◽  
Jia Deng ◽  
Fangjinhua Wang ◽  
Junhui Zhang ◽  
Zhibo Pang ◽  
...  

For industrial manufacturing, industrial robots are required to work together with human counterparts on certain special occasions, where human workers share their skills with robots. Intuitive human–robot interaction brings increasing safety challenges, which can be properly addressed by using sensor-based active control technology. In this article, we designed and fabricated a three-dimensional flexible robot skin made by the piezoresistive nanocomposite based on the need for enhancement of the security performance of the collaborative robot. The robot skin endowed the YuMi robot with a tactile perception like human skin. The developed sensing unit in the robot skin showed the one-to-one correspondence between force input and resistance output (percentage change in impedance) in the range of 0–6.5 N. Furthermore, the calibration result indicated that the developed sensing unit is capable of offering a maximum force sensitivity (percentage change in impedance per Newton force) of 18.83% N−1 when loaded with an external force of 6.5 N. The fabricated sensing unit showed good reproducibility after loading with cyclic force (0–5.5 N) under a frequency of 0.65 Hz for 3500 cycles. In addition, to suppress the bypass crosstalk in robot skin, we designed a readout circuit for sampling tactile data. Moreover, experiments were conducted to estimate the contact/collision force between the object and the robot in a real-time manner. The experiment results showed that the implemented robot skin can provide an efficient approach for natural and secure human–robot interaction.


Author(s):  
Kengo Inoue ◽  
Nobuyuki Kobayashi

Abstract Experimental evaluation of the vibration suppression control performance about the output feedback sliding mode controller for the two-link flexible robot arm is presented. The reduce-order controller is designed based on a kind of the component mode synthesis modeling methodology, and is also designed by the combination of the suboptimal output feedback control and the sliding mode control algorithm. From the experiments of the two-link flexible robot arm model, the good agreement between the numerical simulation results and the experimental ones are obtained not only the motion of the joints but also the arm vibration. And it is verified that the presented output feedback sliding mode controller suppresses the vibration of the flexible arm quit well for various attitude.


1993 ◽  
Vol 115 (1) ◽  
pp. 78-85 ◽  
Author(s):  
P. Lucibello ◽  
M. D. Di Benedetto

In this paper, an inversion-based control of the end effector of a two-link flexible robot arm is investigated. The challenge in solving this problem consists in the instability of the inverse system. Arbitrary initialization of the inverse system leads to unbounded elastic vibrations, even if along the desired trajectory the inertial forces associated with the rigid motion are bounded. We show that bounded solutions of the inverse system exist and we provide procedures for computing such solutions in the case of periodic velocities of the end effector. In particular, we consider the case of tracking an unbounded trajectory, e.g., an end point ramp. A technique for the stabilization of the trajectories to be tracked is also proposed and some numerical simulations illustrate the performance of the controlled system.


In this paper, based on Model Following Control (MFC) approach, a robust controller is used to control a flexible robot manipulator along a pre-defined trajectory. Here two degree of freedom plant is considered that has two different inertias. The plant is run by the single degree of freedom ideal model. Primarily, an ideal model is formulated from the mathematical expression and by selecting a suitable feedback amplifier gain a well-defined response is established. A reference input voltage is given to the model and the plant is driven by the errors, generated from the differences of the states between the plant and model. Here special attention is given to the fact that how precisely the states of the plant can follow the ideal states of the model. The proposed model following control (MFC) system may be used successfully in industrial robots.


1992 ◽  
Vol 114 (1) ◽  
pp. 70-77 ◽  
Author(s):  
B. Siciliano ◽  
J. V. R. Prasad ◽  
A. J. Calise

Lightweight flexible arms will most likely constitute the next generation robots. The design key is the adoption of flexible links, rather than rigid links like in today’s industrial robots. Despite all the potential advantages achievable with a flexible arm, the control problem is complex, due to the introduction of increasingly more complex dynamics. This paper represents an effort toward the goal of designing efficient control systems for multilink flexible arms. A two-time scale approach is pursued which allows the adoption of a composite control strategy. First a slow control can be designed for the slow (rigid) sybsystem, then a fast stabilizing control for the fast (flexible) subsystem. The main contribution of the paper is to address the problem of lack of full state measurements concerned with the fast control design. An output feedback dynamic compensator of fixed order is designed. Its optimal gains are computed according to a loop transfer recovery technique in order to obtain a robust design. The control is tested by means of simulation results for a nonlinear model of a two-link flexible arm.


1996 ◽  
Vol 118 (1) ◽  
pp. 167-172 ◽  
Author(s):  
P. Lucibello ◽  
F. Bellezza

A self-tuned version of a controller for asymptotic trajectory tracking of the end point of a two-link flexible robot arm is presented. The bounded solution to the inverse system, which is used in the control law, is tuned by the estimates of the unknown robot parameters, generated by a least square identification scheme. Soundness of the state of the adaptive controller is achieved by a stabilizing linear feedback from the output error, with fixed gains and robust with respect to variations of the parameters. This guarantees the total stability of the system, which is the main ingredient used in the proof of the controller properties, through a Lyapunov-like approach. The controller performance is finally illustrated by numerically simulating the tracking of an end point ramp under payload mass variations.


1988 ◽  
Vol 110 (1) ◽  
pp. 118-120 ◽  
Author(s):  
T. P. Mitchell ◽  
J. C. Bruch

A single-joint flexible robot arm consisting of one link and carrying an end effector is modeled by a continuous, uniform, clamped-free beam having a concentrated mass at the free end and being clamped at the other end to a compliant finite hub. The first six natural frequencies are given for various ratios of physical parameters. The modal shapes are also presented along with their orthogonality relationship. The limiting cases of some of the physical parameters are discussed.


Sign in / Sign up

Export Citation Format

Share Document