Wearable fingertip sensor for measuring contact force using the amount of finger width deformation

Author(s):  
Yuto NAKAGAWA ◽  
Kimitoshi YAMAZAKI
Keyword(s):  
Alloy Digest ◽  
2013 ◽  
Vol 62 (6) ◽  

Abstract BrushForm 65 is designed for both superior performance and high reliability in appliance, automotive, and computer power applications. Alloy BF-65’s combination of properties limits power loss at the contact interface, controls temperature rise from resistive heating, and provides stable contact force at temperatures to 200 C (390 F). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on forming. Filing Code: Cu-821. Producer or source: Materion Brush Performance Alloys.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
C.M. Wensrich ◽  
E.H. Kisi ◽  
V. Luzin ◽  
A. Rawson ◽  
O. Kirstein

2021 ◽  
Author(s):  
Markku Suomalainen ◽  
Fares J. Abu-dakka ◽  
Ville Kyrki

AbstractWe present a novel method for learning from demonstration 6-D tasks that can be modeled as a sequence of linear motions and compliances. The focus of this paper is the learning of a single linear primitive, many of which can be sequenced to perform more complex tasks. The presented method learns from demonstrations how to take advantage of mechanical gradients in in-contact tasks, such as assembly, both for translations and rotations, without any prior information. The method assumes there exists a desired linear direction in 6-D which, if followed by the manipulator, leads the robot’s end-effector to the goal area shown in the demonstration, either in free space or by leveraging contact through compliance. First, demonstrations are gathered where the teacher explicitly shows the robot how the mechanical gradients can be used as guidance towards the goal. From the demonstrations, a set of directions is computed which would result in the observed motion at each timestep during a demonstration of a single primitive. By observing which direction is included in all these sets, we find a single desired direction which can reproduce the demonstrated motion. Finding the number of compliant axes and their directions in both rotation and translation is based on the assumption that in the presence of a desired direction of motion, all other observed motion is caused by the contact force of the environment, signalling the need for compliance. We evaluate the method on a KUKA LWR4+ robot with test setups imitating typical tasks where a human would use compliance to cope with positional uncertainty. Results show that the method can successfully learn and reproduce compliant motions by taking advantage of the geometry of the task, therefore reducing the need for localization accuracy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hao Wu ◽  
Dandan Hu ◽  
Xu Chen ◽  
Xuebing Zhang ◽  
Min Xia ◽  
...  

Abstract Background Routine preoperative methods to assess airway such as the interincisor distance (IID), Mallampati classification, and upper lip bite test (ULBT) have a certain risk of upper respiratory tract exposure and virus spread. Condyle-tragus maximal distance(C-TMD) can be used to assess the airway, and does not require the patient to expose the upper respiratory tract, but its value in predicting difficult laryngoscopy compared to other indicators (Mallampati classification, IID, and ULBT) remains unknown. The purpose of this study was to observe the value of C-TMD to predict difficult laryngoscopy and the influence on intubation time and intubation attempts, and provide a new idea for preoperative airway assessment during epidemic. Methods Adult patients undergoing general anesthesia and tracheal intubation were enrolled. IID, Mallampati classification, ULBT, and C-TMD of each patient were evaluated before the initiation of anesthesia. The primary outcome was intubation time. The secondary outcomes were difficult laryngoscopy defined as the Cormack-Lehane Level > grade 2 and the number of intubation attempts. Results Three hundred four patients were successfully enrolled and completed the study, 39 patients were identified as difficult laryngoscopy. The intubation time was shorter with the C-TMD>1 finger group 46.8 ± 7.3 s, compared with the C-TMD<1 finger group 50.8 ± 8.6 s (p<0.01). First attempt success rate was higher in the C-TMD>1 finger group 98.9% than in the C-TMD<1 finger group 87.1% (P<0.01). The correlation between the C-TMD and Cormack-Lehane Level was 0.317 (Spearman correlation coefficient, P<0.001), and the area under the ROC curve was 0.699 (P<0.01). The C-TMD < 1 finger width was the most consistent with difficult laryngoscopy (κ = 0.485;95%CI:0.286–0.612) and its OR value was 10.09 (95%CI: 4.19–24.28), sensitivity was 0.469 (95%CI: 0.325–0.617), specificity was 0.929 (95%CI: 0.877–0.964), positive predictive value was 0.676 (95%CI: 0.484–0.745), negative predictive value was 0.847 (95%CI: 0.825–0.865). Conclusion Compared with the IID, Mallampati classification and ULBT, C-TMD has higher value in predicting difficult laryngoscopy and does not require the exposure of upper respiratory tract. Trial registration The study was registered on October 21, 2019 in the Chinese Clinical Trial Registry (ChiCTR1900026775).


Sign in / Sign up

Export Citation Format

Share Document