A15 Development of a 2-Cylinder Opposite-Positioned Alpha-Type Stirling Engine for Testing Heat Exchangers

2014 ◽  
Vol 2014.17 (0) ◽  
pp. 49-50
Author(s):  
Shuwei HUANG ◽  
Huagang LIU
Author(s):  
N. Martaj ◽  
P. Rochelle

In this paper, a 1-D model of an half alpha type “double-acting” Stirling engine (made up of two double-acting pistons, two hot heat-exchangers, two cold heat-exchangers and a common recuperator-regenerator for the two separate gas circuits, all that giving two cycles with 180° phasing) is presented. In this architecture, two cylinders, containing, each one, a double-acting piston, are combined in order to operate like two parallel Stirling systems in opposition of phase. This model, derived from Andersen’s model, is used to describe the compressible flows in the half-engine, under energy transfers. A finite-volume numerical method is applied for the equations of energy, mass and momentum assessment. This modelling was carried out using the Matlab/Simulink software. The results of this dynamic modelling relate to one half engine. We obtain the evolution of the physical parameters (density, pressure and temperature), and the (p, V) cycle. The influence of the various assumptions was studied. A parametric study was carried out in order to obtain the optimal values of the geometry of the engine and its ideal speed of operation.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Muhammad Hassan ◽  
Hussain Ahmed Tariq ◽  
Muhammad Anwar ◽  
Talha Irfan Khan ◽  
Asif Israr

Abstract This paper showcases the designing, fabrication, and performance evaluation of 90-deg alpha-type Stirling engine. The diameters of the hot and cold cylinder are 50 mm and 44 mm, respectively, with a stroke length of 70 mm. The computer-aided design (CAD) model is developed by keeping in mind the ease of manufacturing, maintenance, bearing replacements, and lubrication. After fabrication, the engine is tested by heating the hot cylinder with air as a working fluid. The engine delivered peak power of 155 watts at the temperature of 1123 K and 968 K for hot and cold cylinders, respectively. This developed prototype can be commissioned with the solar parabolic concentrator in the future based on the smooth operation while delivering power.


Author(s):  
James C. Harrod ◽  
Pedro J. Mago

Over the past decade, rising energy demand and cost have created a surge of interest in alternative methods of power generation. As a result, the implementation of combined cooling, heating, and power (CCHP) systems has become a potential candidate for substitution in conventional power generation. The evaluation of a CCHP system must be based on its potential for savings in cost and primary energy reduction. In general, a CCHP system includes several components to satisfy the electric and thermal demands of the facility. These components include the prime mover, heat recovery system, auxiliary boiler, absorption chiller, heating coil unit, and hot water system unit. In practice, the most common prime mover used in CCHP technology is the internal combustion engine, which is limited by low thermal efficiency and poor emissions. Hence, this paper proposes the use of a Stirling engine prime mover that makes use of waste wood chips for fuel. In addition to the standard CCHP components, the Stirling engine houses heat exchangers to aid heat addition and rejection processes. These heat exchangers must be considered along with the other components when analyzing energy requirements. The goal of this study is to determine how the operational characteristics of a constant output biomass-fired Stirling CCHP system are affected by the performance of the individual CCHP system components. The results of this sensitivity analysis are useful in determining the most important parameters to be considered when implementing and designing the system. Results suggest that fuel cost, engine efficiency, engine size, chiller efficiency, and the Stirling engine’s hot side heat exchanger play the most important roles in the CCHP system operational cost. For example, the results show that increasing the engine size leads to increases in primary energy. In addition, an optimum engine size is suggested for cost savings, with smaller and larger engines both leading to increases in operational cost.


Sign in / Sign up

Export Citation Format

Share Document