Critical Rotation Rate and Non-Dimensionalization of Film-wise and Filament-wise Pumping-up phenomena by Rotating Cones

2020 ◽  
Vol 2020.55 (0) ◽  
pp. 123_paper
Author(s):  
Jun KANAMORI ◽  
Takahiro ADACHI ◽  
Junnosuke OKAJIMA
1982 ◽  
Vol 98 ◽  
pp. 299-302 ◽  
Author(s):  
A. S. Endal

Rotation can significantly change the moment-of-inertia of a main sequence star. As a result, the ZAMS rotation rate need only be within ~30% of the critical value in order to reach critical rotation during the hydrogen burning stage. Calculations of the evolution of rotating stars show that the Be stars result from a normal (Maxwellian) distribution of B-star rotation velocities.


2018 ◽  
Vol 846 ◽  
Author(s):  
M. M. Scase ◽  
H. L. Terry

A popular model for a generic fat-cored vortex ring or eddy is Hill’s spherical vortex (Phil. Trans. R. Soc. A, vol. 185, 1894, pp. 213–245). This well-known solution of the Euler equations may be considered a special case of the doubly infinite family of swirling spherical vortices identified by Moffatt (J. Fluid Mech., vol. 35 (1), 1969, pp. 117–129). Here we find exact solutions for such spherical vortices propagating steadily along the axis of a rotating ideal fluid. The boundary of the spherical vortex swirls in such a way as to exactly cancel out the background rotation of the system. The flow external to the spherical vortex exhibits fully nonlinear inertial wave motion. We show that above a critical rotation rate, closed streamlines may form in this outer fluid region and hence carry fluid along with the spherical vortex. As the rotation rate is further increased, further concentric ‘sibling’ vortex rings are formed.


2020 ◽  
Vol 200 (3-4) ◽  
pp. 102-117
Author(s):  
Ahmed S. Hassan ◽  
Azza M. Elbadry ◽  
Alyaa A. Mahmoud ◽  
A. M. Mohammedein ◽  
A. M. Abdallah

2018 ◽  
Vol 615 ◽  
pp. A81 ◽  
Author(s):  
F. H. Navarrete ◽  
D. R. G. Schleicher ◽  
J. Zamponi Fuentealba ◽  
M. Völschow

Context. Eclipsing time variations are observed in many close binary systems. In particular, for several post-common-envelope binaries (PCEBs) that consist of a white dwarf and a main sequence star, the observed-minus-calculated (O–C) diagram suggests that real or apparent orbital period variations are driven by Jupiter-mass planets or as a result of magnetic activity, the so-called Applegate mechanism. The latter explains orbital period variations as a result of changes in the stellar quadrupole moment due to magnetic activity. Aims. In this work we explore the feasibility of driving eclipsing time variations via the Applegate mechanism for a sample of PCEB systems, including a range of different rotation rates. Methods. We used the MESA code to evolve 12 stars with different masses and rotation rates. We applied simple dynamo models to their radial profiles to investigate the scale at which the predicted activity cycle matches the observed modulation period, and quantifiy the uncertainty. We further calculated the required energies to drive the Applegate mechanism. Results. We show that the Applegate mechanism is energetically feasible in 5 PCEB systems. In RX J2130.6+4710, it may be feasible as well considering the uncertainties. We note that these are the systems with the highest rotation rate compared to the critical rotation rate of the main-sequence star. Conclusions. The results suggest that the ratio of physical to critical rotation rate in the main sequence star is an important indicator for the feasibility of Applegate’s mechanism, but exploring larger samples will be necessary to probe this hypothesis.


2010 ◽  
Vol 6 (S272) ◽  
pp. 89-90
Author(s):  
Wenjin Huang ◽  
Douglas R. Gies ◽  
M. Virginia McSwain

AbstractIn an analysis of the rotational properties of more than 1100 B stars (~660 cluster and ~500 field B stars), we determine the projected rotational velocity (V sin i), effective temperature, gravity, mass, and critical rotation speed for each star. The new data provide us a solid observational base to explore many hot topics in this area: Why do field B stars rotate slower than cluster B stars? How fast do B stars rotate when they are just born? How fast can B stars rotate before they become Be stars? How does the rotation rate of B stars change with time? Does the evolutionary change in rotation velocity lead to the Be phenomenon? Here we report the results of our efforts in searching for answers to these questions based on the latest B star census.


2011 ◽  
Vol 679 ◽  
pp. 343-382 ◽  
Author(s):  
ANDRE S. CHAN ◽  
PETER A. DEWEY ◽  
ANTONY JAMESON ◽  
CHUNLEI LIANG ◽  
ALEXANDER J. SMITS

The flow over a pair of counter-rotating cylinders is investigated numerically and experimentally. It is demonstrated that it is possible to suppress unsteady vortex shedding for gap sizes from one to five cylinder diameters, at Reynolds numbers from 100 to 200, expanding on the more limited work by Chan & Jameson (Intl J. Numer. Meth. Fluids, vol. 63, 2010, p. 22). The degree of unsteady wake suppression is proportional to the speed and the direction of rotation, and there is a critical rotation rate where a complete suppression of flow unsteadiness can be achieved. In the doublet-like configuration at higher rotational speeds, a virtual elliptic body that resembles a potential doublet is formed, and the drag is reduced to zero. The shape of the elliptic body primarily depends on the gap between the two cylinders and the speed of rotation. Prior to the formation of the elliptic body, a second instability region is observed, similar to that seen in studies of single rotating cylinders. It is also shown that the unsteady wake suppression can be achieved by rotating each cylinder in the opposite direction, that is, in a reverse doublet-like configuration. This tends to minimize the wake interaction of the cylinder pair and the second instability does not make an appearance over the range of speeds investigated here.


2018 ◽  
Vol 841 ◽  
pp. 434-462 ◽  
Author(s):  
Kannabiran Seshasayanan ◽  
Alexandros Alexakis

Using a large number of numerical simulations we examine the steady state of rotating turbulent flows in triple periodic domains, varying the Rossby number $Ro$ (that measures the inverse rotation rate) and the Reynolds number $Re$ (that measures the strength of turbulence). The examined flows are sustained by either a helical or a non-helical Roberts force, that is invariant along the axis of rotation. The forcing acts at a wavenumber $k_{f}$ such that $k_{f}L=4$, where $2\unicode[STIX]{x03C0}L$ is the size of the domain. Different flow behaviours were obtained as the parameters are varied. Above a critical rotation rate the flow becomes quasi-two-dimensional and transfers energy to the largest scales of the system, forming large coherent structures known as condensates. We examine the behaviour of these condensates and their scaling properties close to and away from this critical rotation rate. Close to the critical rotation rate the system transitions supercritically to the condensate state, displaying a bimodal behaviour oscillating randomly between an incoherent-turbulent state and a condensate state. Away from the critical rotation rate, it is shown that two distinct mechanisms can saturate the growth of the large-scale energy. The first mechanism is due to viscous forces and is similar to the saturation mechanism observed for the inverse cascade in two-dimensional flows. The second mechanism is independent of viscosity and relies on the breaking of the two-dimensionalization condition of the rotating flow. The two mechanisms predict different scaling with respect to the control parameters of the system (Rossby and Reynolds), which are tested with the present results of the numerical simulations. A phase space diagram in the $Re,Ro$ parameter plane is sketched.


1996 ◽  
Vol 451 ◽  
Author(s):  
S. D. Leith ◽  
D. T. Schwartz

ABSTRACTDescribed are results showing that an oscillating flow-field can induce spatially periodic composition variations in electrodeposited NiFe films. Flow-induced NiFe composition modulated alloys (CMA's) were deposited on the disk of a rotating disk electrode by oscillating the disk rotation rate during galvanostatic plating. Deposit composition and structure were investigated using potentiostatic stripping voltammetry and scanning probe microscopy. Results illustrate a linear relationship between the composition modulation wavelength and the flow oscillation period. CMA's with wavelengths less than 10 nm can be fabricated when plating with a disk rotation rate oscillation period less than 3 seconds.


Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


Sign in / Sign up

Export Citation Format

Share Document