421 Numerical Simulation of Unsteady Pressure Field in a Diffuser Vane Passage of a Small Centrifugal Blower

2014 ◽  
Vol 2014.50 (0) ◽  
pp. 91-92
Author(s):  
Yuki TOKUYAMA ◽  
Ken-ichi FUNAZAKI ◽  
Hiromasa KATO ◽  
Takeshi HONDA
2021 ◽  
Vol 345 ◽  
pp. 00015
Author(s):  
Matěj Jeřábek ◽  
Michal Volf ◽  
Daniel Duda

The article describes a numerical simulation of flow in the cooling system of an electromagnetic calorimeter by analysing the temperature and pressure fields. Two fundamentally different approaches were used to analyse the pressure field - analytical 1D calculation and numerical 3D flow simulation. The article contains a detailed evaluation and description of individual analyses using the commercial software ANSYS 2020 R1.


Author(s):  
Jose´ Gonza´lez ◽  
Carlos Santolaria ◽  
Eduardo Blanco ◽  
Joaqui´n Ferna´ndez

Both experimental and numerical studies of the unsteady pressure field inside a centrifugal pump have been carried out. The unsteady patterns found for the pressure fluctuations are compared and a further and more detailed flow study from the numerical model developed will be presented in this paper. Measurements were carried out with pressure transducers installed on the volute shroud. At the same time, the unsteady pressure field inside the volute of a centrifugal pump has been numerically modelled using a finite volume commercial code and the dynamic variables obtained have been compared with the experimental data available. In particular, the amplitude of the fluctuating pressure field in the shroud side wall of the volute at the blade passing frequency is successfully captured by the model for a wide range of operating flow rates. Once the developed numerical model has shown its capability in describing the unsteady patterns experimentally measured, an explanation for such patterns is searched. Moreover, the possibilities of the numerical model can be extended to other sections (besides the shroud wall of the volute), which can provide plausible explanations for the dynamic interaction effects between the flow at the impeller exit and the volute tongue at different axial positions. The results of the numerical simulation are focused in the blade passing frequency in order to study the relative effect of the two main phenomena occurring at that frequency for a given position: the blade passing in front of the tongue and the wakes of the blades.


Author(s):  
S. Pieper ◽  
J. Schulte ◽  
A. Hoynacki ◽  
H. E. Gallus

In order to verify an inverse design concept for modern compressor bladings, a subsonic compressor front stage with IGV was investigated. One objective of the design was to survey the flow field in detail, with emphasis on 3D viscous and unsteady aspects of the flow. Therefore, the compressor was equipped with various steady and unsteady measurement techniques. Additionally, a compressor design was chosen that allows an extension up to three stages with regard to the investigation of multistage axial compressor flow behavior. Test results of the steady measurements are discussed for IGV, rotor, and stator flow at design conditions as well as the overall stage performance. The measurements of the steady flow behavior confirm the expected design performance and show the high potential of the controlled diffusion airfoil concept. Only at the side walls near hub and casing there are some differences between design and measurement due to the complex three dimensional flow. For the study of unsteady effects, detailed measurements using hot-wire probes, glue-on hot-films, and semiconductor pressure transducers were performed. All measurements are evaluated using the ensemble-average technique. The results show how the boundary layers of the inlet guide vanes and stator blades develop in a flow that is periodically disturbed by the rotor. Time-dependent pressure distributions at midspan of both stators are described. In addition, the unsteady pressure field at the casing above the rotor was investigated. The minimum wall pressure is located away from the blade suction surface. The effects of tip clearance flow on the performance are presented. The radial extent covers 15% span from the tip. At rotor exit, the unsteady pressure field and the time-dependent three-dimensional velocity vectors illustrate the salient features of the viscous flow associated with the rotor.


2011 ◽  
Vol 181-182 ◽  
pp. 846-851
Author(s):  
Meng Hua Wu ◽  
Lan Bo Liu ◽  
Yuan Gang Wang ◽  
Wei Ping Jia

The numerical simulation of flow field and pressure field in the micro-region with different power ultrasonic were performed by FLUENT6.3 simulation software. Ultrasonic power on mass transfer effect was analyzed through the simulation results combined with surface morphology of micro casting. The results illustrated that micro electroforming assisted with appropriate power ultrasonic can significantly enhance mass transfer process and improve surface morphology of micro casting. And it was confirmed that Fluent was reliable in simulating the effect of ultrasonic on mass transfer and helpful to optimize and design deposition experiments with ultrasonic.


2010 ◽  
Vol 160-162 ◽  
pp. 280-286
Author(s):  
Ri Chao Liu ◽  
Zhong Hua Tang ◽  
Wei Yang Qi

This paper adopted computational fluid dynamics (CFD) method, used k-ε RNG turbulence model-closed control differential equations for numerical simulation. Through numerical simulation and analysis of wind environment in a middle school campus, the round wind field under dominant wind direction was got in the summer and winter. According to the results of velocity field and pressure field, analysis the wind environment, compared the influence of wind direction and surrounding buildings space to the natural ventilation, provided guidance introduce for the layout of the school.


Sign in / Sign up

Export Citation Format

Share Document