scholarly journals Designing a top cooling system for an electromagnetic calorimeter

2021 ◽  
Vol 345 ◽  
pp. 00015
Author(s):  
Matěj Jeřábek ◽  
Michal Volf ◽  
Daniel Duda

The article describes a numerical simulation of flow in the cooling system of an electromagnetic calorimeter by analysing the temperature and pressure fields. Two fundamentally different approaches were used to analyse the pressure field - analytical 1D calculation and numerical 3D flow simulation. The article contains a detailed evaluation and description of individual analyses using the commercial software ANSYS 2020 R1.

2005 ◽  
Vol 2005 (3) ◽  
pp. 244-255 ◽  
Author(s):  
Miguel Asuaje ◽  
Farid Bakir ◽  
Smaïne Kouidri ◽  
Frank Kenyery ◽  
Robert Rey

A 3D-CFD simulation of the impeller and volute of a centrifugal pump has been performed using CFX codes. The pump has a specific speed of 32 (metric units) and an outside impeller diameter of 400 mm. First, a 3D flow simulation for the impeller with a structured grid is presented. A sensitivity analysis regarding grid quality and turbulence models were also performed. The final impeller model obtained was used for a 3D quasi-unsteady flow simulation of the impeller-volute stage. A procedure for designing the volute, the nonstructured grid generation in the volute, and the interface flow passage between the impeller and volute are discussed. This flow simulation was carried out for several impeller blades and volute tongue relative positions. As a result, velocity and pressure field were calculated for different flow rates, allowing to obtain the radial thrust on the pump shaft.


Author(s):  
S Bair

A thorough characterization of all viscous flow properties relevant to steady simple shear was carried out for five liquid lubricants of current interest to tribology. Shear stresses were generated to values significant to concentrated contact lubrication. Two types of non-Newtonian response were observed: shear-thinning as a power-law fluid and near rate-independence. Functions and parameters were obtained for the temperature and pressure dependence of the viscosity and of the time constant for the Carreau-Yasuda equation. Results are consistent with free volume and kinetic theory, but directly contradict many assumptions currently utilized for numerical simulation and for extracting rheological properties from contact measurements.


2015 ◽  
Vol 741 ◽  
pp. 536-540
Author(s):  
Xiao Zhi Qiu ◽  
Yan Ming Zhao ◽  
Bao Hua Huang ◽  
Wei Xu

Based on the analysis of indirect air cooling system, a numerical simulation model of indirect air cooling system was constructed by ANSYS software. According to the different wind speed condition, the temperature characteristic of indirect air cooling system was analyzed. The simulation results show that with the increase of wind speed, the ventilation and heat release of the indirect air cooling system change greatly. It provides a theoretical basis for the design of the wind-proof device of indirect air cooling system.


2013 ◽  
Vol 850-851 ◽  
pp. 355-358
Author(s):  
Dong Du

This paper describes the use of Fluid Flow Simulation Software to model a passenger aircraft engine environmental control system. The analysis simulates the cooling pack and the engine distribution system in a single model.The engine environmental system is very important for engine working efficiently. Using AMEsim software to simulate the cooling system can make it easily and clearly. The influence of the heat component and the fan operating is studied also. Through the analysis of the cooling system, we know that with the help of fan, the system can get additional air in the radiator and make the temperature decrease consequently.


1995 ◽  
Vol 117 (4) ◽  
pp. 683-690 ◽  
Author(s):  
Peter E. Raad ◽  
Shea Chen ◽  
David B. Johnson

A new method of calculating the pressure field in the simulation of two-dimensional, unsteady, incompressible, free surface fluid flow by use of a marker and cell method is presented. A critical feature of the new method is the introduction of a finer mesh of cells in addition to the regular mesh of finite volume cells. The smaller (micro) cells are used only near the free surface, while the regular (macro) cells are used throughout the computational domain. The movement of the free surface is accomplished by the use of massless surface markers, while the discrete representation of the free surface for the purpose of the application of pressure boundary conditions is accomplished by the use of micro cells. In order to exploit the advantages offered by micro cells, a new general equation governing the pressure field is derived. Micro cells also enable the identification and treatment of multiple points on the free surface in a single surface macro cell as well as of points on the free surface that are located in a macro cell that has no empty neighbors. Both of these situations are likely to occur repeatedly in a free surface fluid flow simulation, but neither situation has been explicitly taken into account in previous marker and cell methods. Numerical simulation results obtained both with and without the use of micro cells are compared with each other and with theoretical solutions to demonstrate the capabilities and validity of the new method.


2012 ◽  
Vol 538-541 ◽  
pp. 2061-2066
Author(s):  
Yang Zheng ◽  
Bao Lan Xiao ◽  
Wei Ming Wu ◽  
Xiao Li Yu ◽  
Guo Dong Lu

A radiator is one of the most important components in vehicular cooling system whose excellent fluid flow and heat transfer characteristics guarantees the engine operations. The calculation workload for performance simulation of a whole radiator is too huge due to its size. Experimental study is the conventional method to study radiator performance. This paper put forward a numerical simulation method and radiator heat transfer units were taken as study objects. Orthogonal experiment method was adopted to arrange multi-factor and multi-level calculation schemes. 23 samples with different fin parameters were simulated to investigate their thermal-hydraulic performances. Compared with experimental testing, this method greatly reduced sample manufacturing cost and testing cost, and offered data support for the effect factor study of radiator heat transfer units.


Sign in / Sign up

Export Citation Format

Share Document