Numerical Simulation of Campus Wind Environment

2010 ◽  
Vol 160-162 ◽  
pp. 280-286
Author(s):  
Ri Chao Liu ◽  
Zhong Hua Tang ◽  
Wei Yang Qi

This paper adopted computational fluid dynamics (CFD) method, used k-ε RNG turbulence model-closed control differential equations for numerical simulation. Through numerical simulation and analysis of wind environment in a middle school campus, the round wind field under dominant wind direction was got in the summer and winter. According to the results of velocity field and pressure field, analysis the wind environment, compared the influence of wind direction and surrounding buildings space to the natural ventilation, provided guidance introduce for the layout of the school.

2012 ◽  
Vol 472-475 ◽  
pp. 2000-2003
Author(s):  
Jin Long Meng ◽  
Zhao Qin Yin

The flow characteristics in mini/micro sonic nozzles have been studied in this paper using the computational fluid dynamics (CFD) method. The result shows that the flow rate of the parallel combined nozzles is not equal to but smaller than that of the sum of the nozzles. The reason is the each effect of the air after nozzles, which changes the flow field parameters .The more number of the parallel combined nozzles, the bigger error exits between actual flow rate and that of the sum of the nozzles. The result is consistent to the experiment. The study also shows the smaller of the nozzle’s diameter, the bigger error exits.


2013 ◽  
Vol 353-356 ◽  
pp. 2993-2996 ◽  
Author(s):  
Tao Tao Shui ◽  
Jing Liu ◽  
Fei Ma

In order to investigate natural cross-ventilation in buildings, computational fluid dynamics (CFD) with the DES model is applied. The aim of this paper is to investigate the influence of surrounding buildings on natural ventilation in target building under different separation distances. The simulation results indicate that surrounding buildings has a significant impact on airflow structure and airflow rate of the target building. The flow characteristics in target building is determined by the flow regime in street canyon.


2013 ◽  
Vol 368-370 ◽  
pp. 611-614
Author(s):  
An Shik Yang ◽  
Jen Hao Wu ◽  
Yu Hsuan Juan ◽  
Ying Ming Su

The present study developed a computational fluid dynamics (CFD)-based performance simulator for assessing natural ventilation effectiveness to the central patio and corridors of the new administrative building of the Guanyin Township, Taiwan. The data can share with other potential users for achieving better understanding of the indoor microclimate and the interaction of buildings with urban wind environment for improvement of their design and functioning aspects during the decision-making procedure.


2011 ◽  
Vol 71-78 ◽  
pp. 2112-2115 ◽  
Author(s):  
Hui Li ◽  
Xin Hui Ma

Because of excessive pressure loss when the gas went through distributor in fluidized bed (FB), based on the principle and method of computational fluid dynamics (CFD), using the software, FLUENT, the inner flow field in the fluidized bed with distributor was simulated. This article analyzed the three-dimensional velocity field distribution, pressure field distribution under the different arrangement of hole form. and the good advice was given on the structural optimization of the cold distributor.


2011 ◽  
Vol 383-390 ◽  
pp. 6608-6613 ◽  
Author(s):  
Ya Xin Su ◽  
Xin Wan

Natural ventilation in an workshop of iron and steel company has been numerically simulated by computational fluid dynamics (CFD) method. Realizable k −ε turbulent model combined with a DO radiation model which took into account the radiation between the heat source and the wall was applied to carry out the simulation for a typical industrial workshop. Numerical results were verified by published experimental data of local temperature and further modification of the workshop structure was made based on numerical calculation to improve the natural ventilation effect further.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the influence of various bench arrangements on the microclimate inside a two-span greenhouse is numerically investigated using three-dimensional Computational Fluid Dynamics (CFD) models. Longitudinal and peninsular arrangements are investigated for both leeward and windward opened roof ventilators. The velocity and temperature distributions at plant level (1m) were of particular interest. The research in this paper is an extension of two-dimensional work conducted previously [1]. Results indicate that bench layouts inside the greenhouse have a significant effect on the microclimate at plant level. It was found that vent opening direction (leeward or windward) influences the velocity and temperature distributions at plant level noticeably. Results also indicated that in general, the leeward facing greenhouses containing either type of bench arrangement exhibit a lower velocity distribution at plant level compared to windward facing greenhouses. The latter type of greenhouses has regions with relatively high velocities at plant level which could cause some concern. The scalar plots indicate that more stagnant areas of low velocity appear for the leeward facing greenhouses. The windward facing greenhouses also display more heterogeneity at plant level as far as temperature is concerned.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sulistiya Sulistiya ◽  
Alief Sadlie Kasman

AbstractNumerical simulation using Computational Fluid Dynamics (CFD) method is one way of predicting airflow characteristics on the model. This method is widely used because it is relatively inexpensive and faster in getting desired results compared with performing direct testing. The correctness of a computational simulation output is highly dependent on the input and how it was processed. In this paper, simulation is done on Onera M6 Wing, to investigate the effect of a turbulence model’s application on the accuracy of the computational result. The choice of Onera M6 Wing as a simulation’s model is due to its extensive database of testing results from various wind tunnels in the world. Among Turbulence models used are Spalart-Allmaras, K-Epsilon, K-Omega, and SST.Keywords: CFD, fluent, Model, Turbulence, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.AbstraksSimulasi numerik dengan menggunakan metode Computational Fluid Dynamics (CFD) merupakan salah satu cara untuk memprediksi karakteristik suatu aliran udara yang terjadi pada model. Metode ini banyak digunakan karena sifatnya yang relatif murah dan cepat untuk mendapatkan hasil dibandingkan dengan melakukan pengujian langsung. Benar tidak hasil sebuah simulasi komputasi sangat tergantung pada inputan yang diberikan serta cara memproses data inputan tersebut. Pada tulisan ini dilakukan simulasi dengan menggunakan sayap onera M6 dengan tujuan untuk mengetahui pengaruh penggunaan model turbulensi terhadap keakuratan hasil komputasi. Pilihan sayap onera M6 sebagai model simulasi dikarenakan model tersebut sudah memiliki database hasil pengujian yang cukup lengkap dan sudah divalidasi dari berbagai terowongan angin di dunia. Model turbulensi yang digunakan diantaranya Spalart-Allmaras, K-Epsilon, K-Omega dan SST.Kata Kunci : CFD, fluent, Model, Turbulensi, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Fawaz Ghaleb Noman ◽  
Nazri Kamsah ◽  
Haslinda Mohamed Kamar

A combined natural ventilation and mechanical fans are commonly used to cool the interior space inside the mosques in Malaysia. This article presents a study on thermal comfort in the Al-Jawahir Mosque, located in Johor Bahru, Malaysia. The objective is to assess the thermal comfort inside the mosque under the present ventilation system by determining the Predicted Mean Vote (PMV) and the Predicted Percentage of Dissatisfied (PPD). These values were then compared to the limits stated in the ASHRAE Standard-55. It was found that the PMV varies from 1.68 to 2.26 while the PPD varies from 61% to 87%. These show that the condition inside the mosque is quite warm. Computational fluid dynamics (CFD) method was used to carry out flow simulations, to identify a suitable strategy to improve the thermal comfort inside the mosque. Results of CFD simulations show that installing four exhaust fans above the windows on the west-side wall of the mosque is the most effective strategy to improve the thermal comfort inside the mosque. Both the PMV and PPD values can potentially be reduced by more than 60%.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3350 ◽  
Author(s):  
Guoping Huang ◽  
Xin Xiang ◽  
Chen Xia ◽  
Weiyu Lu ◽  
Lei Li

The reduction in specific fuel consumption (SFC) is crucial for small/mid-size cost-controllable aircraft, which is very conducive to reducing cost and carbon dioxide emissions. To decrease the SFC, increasing the bypass ratio (BPR) is an important way. Conventional high-BPR engines have several limitations, especially the conflicting spool-speed requirements of a fan and a low-pressure turbine. This research proposes an air-driven fan with a tip turbine (ADFTT) as a potential device for a high-bypass propulsion system. Moreover, a possible application of this ADFTT is introduced. Thermodynamic analysis results show that an ADFTT can improve thrust from a prototype turbofan. As a demonstration, we selected a typical small-thrust turbofan as the prototype and applied the ADFTT concept to improve this model. Three-dimensional flow fields were numerically simulated through a Reynolds averaged Navier-Stokes (RANS)-based computational fluid dynamics (CFD) method. The performance of this ADFTT has the possibility of amplifying the BPR more than four times and increasing the thrust by approximately 84% in comparison with the prototype turbofan.


Sign in / Sign up

Export Citation Format

Share Document