Measurement of Thermal Conductivity of Low Bulk Density Thermal Insulations

2002 ◽  
Vol 2002 (0) ◽  
pp. 39-40 ◽  
Author(s):  
Takahiro OHMURA ◽  
Mikinori TSUBOI ◽  
Masatake ONODERA ◽  
Toshio TOMIMURA
Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4408
Author(s):  
Dániel Csanády ◽  
Olivér Fenyvesi ◽  
Balázs Nagy

An analytic-empirical model was developed to describe the heat transfer process in raw straw bulks based on laboratory experiments for calculating the thermal performance of straw-based walls and thermal insulations. During the tests, two different types of straw were investigated. The first was barley, which we used to compose our model and identify the influencing model parameters, and the second was wheat straw, which was used only for validation. Both straws were tested in their raw, natural bulks without any modification except drying. We tested the thermal conductivity of the materials in a bulk density range between 80 and 180 kg/m3 as well as the stem density, material density, cellulose content, and porosity. The proposed model considers the raw straw stems as natural composites that contain different solids and gas phases that are connected in parallel to each other. We identified and separated the following thermal conductivity factors: solid conduction, gas conduction in stem bulks with conduction factors for pore gas, void gas, and gaps among stems, as well as radiation. These factors are affected by the type of straw and their bulk density. Therefore, we introduced empirical flatness and reverse flatness factors to our model, describing the relationship between heat conduction in stems and voids to bulk density using the geometric parameters of undisturbed and compressed stems. After the validation, our model achieved good agreement with the measured thermal conductivities. As an additional outcome of our research, the optimal bulk densities of two different straw types were found to be similar at 120 kg/m3.


2016 ◽  
Vol 824 ◽  
pp. 100-107 ◽  
Author(s):  
Alena Struhárová

Bulk density and moisture content are factors that significantly affect the physical properties of autoclaved aerated concrete (AAC) including thermal conductivity and other thermo-technical characteristics. This article shows the results of measurements of compressive strength, capillary absorption, water absorption and porosity of AAC (ash on fluidized fly ash) at different bulk density and also the results of thermal conductivity of AAC at different bulk density and variable moisture content of the material. The thermo-technical properties were measured using the Isomet 2104, a portable measuring device. Acquired results demonstrate dependence of physical properties including thermal conductivity of AAC on bulk density and moisture content. The reliability and accuracy of the method of measuring was also shown.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3339-3351 ◽  
Author(s):  
Baowen Wang ◽  
Zhihui Li ◽  
Xinglai Qi ◽  
Nairong Chen ◽  
Qinzhi Zeng ◽  
...  

Wood fibers were prepared as core materials for a vacuum insulation panel (VIP) via a dry molding process. The morphology of the wood fibers and the microstructure, pore structure, transmittance, and thermal conductivity of the wood fiber VIP were tested. The results showed that the wood fibers had excellent thermal insulation properties and formed a porous structure by interweaving with one another. The optimum bulk density that led to a low-cost and highly thermally efficient wood fiber VIP was 180 kg/m3 to 200 kg/m3. The bulk density of the wood fiber VIP was 200 kg/m3, with a high porosity of 78%, a fine pore size of 112.8 μm, and a total pore volume of 7.0 cm3·g-1. The initial total thermal conductivity of the wood fiber VIP was 9.4 mW/(m·K) at 25 °C. The thermal conductivity of the VIP increased with increasing ambient temperature. These results were relatively good compared to the thermal insulation performance of current biomass VIPs, so the use of wood fiber as a VIP core material has broad application prospects.


2018 ◽  
Vol 777 ◽  
pp. 465-470
Author(s):  
Sutas Janbuala ◽  
Mana Eambua ◽  
Arpapan Satayavibul ◽  
Watcharakhon Nethan

The objective of this study was to recycle powdered marble dust to improve mechanical properties and thermal conductivity of lightweight clay bricks. Varying amounts of powdered marble dust (10, 20, 30, and 40 vol.%) were added to a lightweight clay brick at the firing temperatures of 900, 1000, and 1100 °C. When higher quantities of powdered marble dust were added, the values of porosity and water absorption increased while those of thermal conductivity and bulk density decreased. The decrease in apparent porosity and water absorption were also affected by the increase in firing temperature. The most desirable properties of the clay bricks were obtained for the powdered marble dust content of 40 vol.% and firing temperature 900 °C: bulk density of 1.20 g/cm3, compressive strength 9.2 MPa, thermal conductivity 0.32 W/m.K, and water absorption 22.5%.


2018 ◽  
Vol 149 ◽  
pp. 01076
Author(s):  
Guendouz Mohamed ◽  
Boukhelkhal Djamila

Over the past twenty years, the rubber wastes are an important part of municipal solid waste. This work focuses on the recycling of rubber waste, specifically rubber waste of used shoes discharged into the nature and added in the mass of crushed sand concrete with percentage (10%, 20%, 30% and 40%). The physical (workability, fresh density), mechanical (compressive and flexural strength) and thermal (thermal conductivity) of different crushed sand concrete made are analyzed and compared to the respective controls. The use of rubber waste in crushed sand concrete contributes to reduce the bulk density and performance of sand concrete. Nevertheless, the use of rubber aggregate leads to a significant reduction in thermal conductivity, which improves the thermal insulation of crushed sand concrete.


2020 ◽  
Vol 868 ◽  
pp. 32-38
Author(s):  
Valéria Gregorová ◽  
Zuzana Štefunková ◽  
Miriam Ledererová

In this paper, the selected properties of lightweight composites based on the different kinds of binder and recycled waste plastics aggregate were studied. Plastic waste e.g. foamed polystyrene, polypropylene, polyurethane foam or ethyl vinyl acetate (EVA) as an aggregate in these composites was used. Cement CEM II B/S 32.5 R and an organic-based adhesive with the business name Conipur 360 were used as a binder. The cement composites consisted of constant water to cement ratio 0.50 and dose of cement 175 kg/m3. Mixtures of adhesive composites were prepared with constant dose of adhesive 100 kg/m3. The kind of recycled waste aggregate was only changed. The physical properties, such as bulk density, compressive strength and thermo-technical properties were verified. The application of organic-based adhesive resulted in a significant decreasing values of the bulk density (100 kg/m3 - 230 kg/m3) and the thermal conductivity coefficient (0.0511 W/m.K - 0.0686 W/m.K) of lightweight composites. The negative impact of this type of binder resulted to a decreasing value of the compressive strength (0.15 MPa - 0.32 MPa). Use of cement binder caused to an increasing of bulk density (290 kg/m3 - 375 kg/m3) and worsening of the thermal conductivity coefficient of these composites (0.0660 W/m.K - 0.0799 W/m.K). The compressive strength values of cement composites ranged from 0.24 MPa to 0.50 MPa.


2012 ◽  
Vol 509 ◽  
pp. 240-244
Author(s):  
Li Ying Tang ◽  
Xi Cheng ◽  
Ping Lu ◽  
Fang Yue

Abstract: Cordierite–alumina ceramics were prepared with the raw materials of cordierite and α-alumina powder, and TiO2,CuO and MgO were added as composite additives. The effect of MgO/ CuO ratios on the microstructure, thermal conductivity and thermal shock resistance of cordierite–alumina ceramics were researched by X-ray diffraction, scanning electron microscopy and laser flash analyzer; the bulk density and the porosity of cordierite – alumina ceramics were measured. The results show that with increasing of MgO/CuO ratios, the bulk density and thermal conductivity increase firstly and then decrease, and have a minimum with 0.4wt% MgO and 0.667 MgO/CuO; and the porosity of ceramics decreases firstly and then increases and has a maximum with 0.4wt% MgO and 0.667 MgO/CuO;There are little changes in the size of the grain of the ceramics, and a small amount of magnesium aluminate spinel precipitate; the thermal shock resistance performance of the ceramics is developed with the increasing of MgO/CuO ratios.


Sign in / Sign up

Export Citation Format

Share Document