scholarly journals Effect of Pressure on Entrainment Flow Rate in Vertical Upwards Gas-Liquid Annular Two-Phase Flow. 1st Report. Experimental Results for System Pressures from 0.3 to 20MPa.

1996 ◽  
Vol 62 (597) ◽  
pp. 1869-1876
Author(s):  
Masao NAKAZATOMI ◽  
Kotohiko SEKOGUCHI
Author(s):  
Lei Xing-lin ◽  
Huang Shan-fan ◽  
Guo Zhong-xiao ◽  
Guo Xiao-yu

As a safety device to alleviate the loss of reactor coolant, the siphon breaking system is widely used in nuclear power plant. Researchers are very interested in this technique for its “passive” characteristic. Vertical downward air-water two-phase flow is encountered in the siphon breaking process. Previous researches have been more focused on some physical parameters, such as water flow rate, air flow rate, pressure drop and the undershooting height. Void fraction, as a key parameter in multiphase flow, should be studied in the siphon breaking phenomenon. Therefore, a needle-contact capacitance probe is used for flow-phase identification and a single-wire capacitance for obtaining the average value of gas distribution along the straight line. Experimental results show that the flow pattern during the vertical downward air-water two-phase flow is mostly annular flow. With the gas entering the pipeline, void fraction profile against time can be divided into three stages. The slope in the first stage is similar to that in the third. However, the slope slows down in the middle stage. The experimental results also show that the real duration time to break the siphon flow is as short as about 6 s. The void fraction at the end of the siphon breaking process is about 0.38. During this stage, a large amount of gas is sucked into the downcomer and little water is inhaled. The gas phase results in a convergent effect, where the air intake is the direct and fundamental reason of siphon breaking.


ACS Omega ◽  
2020 ◽  
Vol 5 (41) ◽  
pp. 26955-26955
Author(s):  
Hongwen Luo ◽  
Beibei Jiang ◽  
Haitao Li ◽  
Ying Li ◽  
Zhangxin Chen

Author(s):  
E. de Langre ◽  
J. L. Riverin ◽  
M. J. Pettigrew

The time dependent forces resulting from a two-phase air-water mixture flowing in an elbow and a tee are measured. Their magnitudes as well as their spectral contents are analyzed. Comparison is made with previous experimental results on similar systems. For practical applications a dimensionless form is proposed to relate the characteristics of these forces to the parameters defining the flow and the geometry of the piping.


2014 ◽  
Vol 1 (4) ◽  
pp. TEP0019-TEP0019 ◽  
Author(s):  
Jun-ichi TAKANO ◽  
Hideaki MONJI ◽  
Akiko KANEKO ◽  
Yutaka ABE ◽  
Hiroyuki YOSHIDA ◽  
...  

Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


Sign in / Sign up

Export Citation Format

Share Document