scholarly journals Increase of Thermal Efficiency and Reduction of NOx Emissions in a DI Diesel Engine. 1st Report. Influence of Compression Ratio and Fuel Injection Pressure.

2001 ◽  
Vol 67 (658) ◽  
pp. 1571-1577
Author(s):  
Nobuyasu MATSUDAIRA ◽  
Akira NUMATA ◽  
Shinnosuke OSAFUNE ◽  
Koji IMOTO
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


2004 ◽  
Vol 2004.3 (0) ◽  
pp. 131-132
Author(s):  
Yusuke NAKAHIRA ◽  
Takashi OZAWA ◽  
Hidekatsu TSUTSUMI ◽  
Masahiro ONODERA ◽  
Koji IMOTO

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Prabhakara Rao Ganji ◽  
Rajesh Khana Raju Vysyaraju ◽  
Srinivasa Rao Surapaneni ◽  
B. Karuna Kumar

AbstractIn recent years, engine emissions have been one of the important problems which are of great concern. Hence, there is a growing need to develop engines with reduced emission. In the present study, Variable Compression Ratio diesel engine model has been validated by comparing the simulation results with the experimental. The study is aimed at analyzing the effect of compression ratio, exhaust gas recirculation, fuel injection pressure and start of injection on engine performance and emission characteristics. Using composite desirability technique, the engine parameters have been optimized to achieve lower NOx, soot and ISFC. The optimum combination has been observed at Compression ratio 17.52, Start of injection −30.1 °aTDC, Fuel injection pressure 736.06 bar and Exhaust gas recirculation 28.29%. ISFC, NOx and soot are reduced by 2.37%, 29.11% and 83.81% respectively. Higher Target Fuel Distribution Index indicates the improved mixture homogeneity for the optimized parameters.


2021 ◽  
Author(s):  
Jatoth Ramachander ◽  
Santhosh Kumar Gugulothu ◽  
Gadepalli Ravikiran Sastry ◽  
Burra Bhsker

Abstract This paper deals with analysis of the influence of fuel injection pressure with ternary fuel (diesel + Mahua methyl ester + Pentanol) on the emission, combustion and performance characteristics of a four stroke, single cylinder, common rail direct injection diesel engine working at a constant speed and varying operating scenarios. The usage of ternary fuel raised the NOx emission (12.46%) value and specific fuel consumption (SFC) with a decrease in the BTE (brake thermal efficiency) which attributes to its properties and combustion characteristics. The combustion process was affected by the physical properties of the blended fuel such as volatility and viscosity and this eventually affected the performance of the engine. The fuel injection pressure is varied from 20 MPa to 50 MPa so that ternary fuel can be properly utilized. The high injection pressure of 50 MPa has better combustion characteristics and higher brake thermal efficiency (4.39%) value than other injection pressure values. A better mixture is formed due to well atomized spray and as a result, the levels of CO (22.24%), HC (9.49%) and smoke (7.5%) falls with the increase in injection pressure.


Sign in / Sign up

Export Citation Format

Share Document