scholarly journals Senf-Induced Oscillation of Free Surface in a Tank with Circulating Flow. 3rd Report. Ideal Fluid Model.

1992 ◽  
Vol 58 (551) ◽  
pp. 2017-2023
Author(s):  
Haruki MADARAME ◽  
Koji OKAMOTO ◽  
Tsuyoshi HAGIWARA
Keyword(s):  
Author(s):  
I. L. Collings

AbstractSolutions are found to two cusp-like free-surface flow problems involving the steady motion of an ideal fluid under the infinite-Froude-number approximation. The flow in each case is due to a submerged line source or sink, in the presence of a solid horizontal base.


Author(s):  
Fre´de´ric Dias ◽  
Denys Dutykh ◽  
Jean-Michel Ghidaglia

The purpose of this communication is to discuss the simulation of a free surface compressible flow between two fluids, typically air and water. We use a two fluid model with the same velocity, pressure and temperature for both phases. In such a numerical model, the free surface becomes a thin three dimensional zone. The present method has at least three advantages: (i) the free-surface treatment is completely implicit; (ii) it can naturally handle wave breaking and other topological changes in the flow; (iii) one can easily vary the Equation of States (EOS) of each fluid (in principle, one can even consider tabulated EOS). Moreover, our model is unconditionally hyperbolic for reasonable EOS.


Author(s):  
G. C. Hocking ◽  
L. K. Forbes

AbstractThe problem of withdrawing water through a line sink from a region containing an homogeneous fluid beneath a free surface is considered. Assuming steady, irrotational flow of an ideal fluid, solutions with low Froude number containing a stagnation point on the free surface above the sink are sought using a series substitution method. The solutions are shown to exist for a value of the Froude number up to a critical value of about 1.4. No solutions of this type are found for Froude numbers greater than this value.


Author(s):  
Luka Sˇtrubelj ◽  
Iztok Tiselj

The free surface flows are successfully modeled with one of the existing free surface models, such as: level set method, volume of fluid method, front tracking method, two-fluid model (two momentum equations) with modified interphase force and some others. The main disadvantage of the two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced as presented in this paper. The interface is sharpened with the conservative level set method, where after the advection step of volume fraction the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. The reduction of the interface diffusion can also be called interface sharpening. In the present paper the two-fluid model with interface sharpening is validated with Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to the gravity in the system, the fluid with a higher density moves below the fluid with a smaller density. The initial condition is not a flat interface between the fluids, but a cosine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops into small droplets as result of numerical dispersion of interface (interface sharpening) or to narrow trails with interface diffusion (no interface sharpening). The results of the two-fluid model with interface sharpening are compared to two-fluid model without interface sharpening and single-fluid-model with/without interface sharpening. The analytic solution of amplitude growth can be found for small amplitudes and was also compared to simulation.


Sign in / Sign up

Export Citation Format

Share Document