scholarly journals Improvement of Control Performance for Active Vibration Control of Railway Vehicle. Adoption of H.INF. Control Law to a Scaled Model on a Test Apparatus.

1996 ◽  
Vol 62 (602) ◽  
pp. 3944-3950 ◽  
Author(s):  
Katsuya TANIFUJI ◽  
Tetsuya NAGAE
Author(s):  
Junyoung Park ◽  
Alan Palazzolo ◽  
Raymond Beach

Theory and simulation results have demonstrated that four, variable speed flywheels could potentially provide the energy storage and attitude control functions of existing batteries and control moment gyros on a satellite. Past modeling and control algorithms were based on the assumption of rigidity in the flywheel’s bearings and the satellite structure. This paper provides simulation results and theory, which eliminates this assumption utilizing control algorithms for active vibration control (AVC), flywheel shaft levitation, and integrated power transfer and attitude control (IPAC), that are effective even with low stiffness active magnetic bearings (AMBs) and flexible satellite appendages. The flywheel AVC and levitation tasks are provided by a multiple input–multiple output control law that enhances stability by reducing the dependence of the forward and backward gyroscopic poles with changes in flywheel speed. The control law is shown to be effective even for (1) large polar to transverse inertia ratios, which increases the stored energy density while causing the poles to become more speed dependent, and for (2) low bandwidth controllers shaped to suppress high frequency noise. Passive vibration dampers are designed to reduce the vibrations of flexible appendages of the satellite. Notch, low-pass, and bandpass filters are implemented in the AMB system to reduce and cancel high frequency, dynamic bearing forces and motor torques due to flywheel mass imbalance. Successful IPAC simulation results are presented with a 12% initial attitude error, large polar to transverse inertia ratio (IP∕IT), structural flexibility, and unbalance mass disturbance.


2011 ◽  
Vol 52-54 ◽  
pp. 358-364
Author(s):  
Jong Seok Oh ◽  
Seung Bok Choi

In this paper, vibration control performance of piezostack active engine mount system for unmanned aero vehicle (UAV) is evaluated via computer simulation. As a first step, the dynamic model of engine mount system which is supported at three points is derived. In the configuration of engine mount system, the inertia type of piezostack based active mount is installed for active vibration control. Then, the vibration level of UAV engine is measured. To attenuate the vibration which is transmitted from engine, a sliding mode controller which is robust to uncertain parameters is designed. Vibration control performances of active engine mount system are evaluated at each mount and center of gravity. Effective Control results are presented in both time and frequency domains.


Author(s):  
Shigeru Kougo ◽  
Hiroshi Fujihara ◽  
Katsuhiko Yoshida ◽  
Hiroyuki Tanaka ◽  
Toru Watanabe ◽  
...  

Abstract This paper deals with active vibration control of two identical flexible structures arranged in parallel. One of the authors had presented a vibration control mechanism so that two or more structures are connected via non-contact actuators in which one structure is utilized as a reaction wall for another structure’s control mutually. However, in such a mechanism, the control performance reduces as the natural frequencies of structures become closer. In this report, authors present a modified mechanism in which actuators are connected to the structures with long arms so that the direction of vibration in a mode differs on each structure. In this way, the reaction force from the actuator on structure is introduced to another structure for dissipative force even if the properties of structures are identical. Computer simulation and control experiment are carried out and the effectiveness of presented mechanism is confirmed.


2019 ◽  
Vol 9 (15) ◽  
pp. 3188 ◽  
Author(s):  
Xiyue Ma ◽  
Lei Wang ◽  
Jian Xu

Active control of low frequency vibration and sound radiation from a rib stiffened plate has great practical significance as this structure is widely applied in engineering, such as aircraft or ship fuselage shells. This paper presents an investigation on the performance of active vibration control of the rib stiffened plate by using decentralized velocity feedback controllers with inertial actuators. A simple modeling approach in frequency domain is proposed in this research to calculate the control performance. The theoretical model of vibrating response of the ribbed plate and the velocity feedback controllers is first established. Then, as an important part, the influences of the control gain and the number of the decentralized unit on the control performance are investigated. Results obtained demonstrate that—similar to that of the unribbed plate case—appropriately choosing the number of the unit and their feedback gains can achieve good control results. Too many units or very high feedback gains will not bring further noise reduction.


Author(s):  
C. H. Chung ◽  
C. A. Tan

Abstract Active vibration control of an axially moving string by wave cancellation is presented. The control problem is formulated in the frequency domain. An exact, closed-form expression for the transfer function of the closed-loop system, consisting of the flexible structure, a feedback control law and the dynamics of the sensing and actuation devices, is derived. It is shown that all vibration modes can be stabilized and that the controlled system has no resonance. Moreover, the designed controller is applicable to the control of the string transverse vibration under various kinds of loading and constraint conditions. Results for the response of the controlled string under different excitations are presented and discussed along with the wave propagation and cancellation characteristics.


2001 ◽  
Vol 17 (4) ◽  
pp. 173-177
Author(s):  
Der-An Wang ◽  
Yii-Mai Huang

ABSTRACTActive vibration control of a flexible beam subjected to arbitrary, unmeasurable disturbance forces is investigated in this paper. The concept of independent modal space control is adopted. Both the feedforward and feedback control is implemented here to reduce the beam vibration. Because of the existence of the disturbance forces, the feedforward control is applied by employing the idea of force cancellation. A modal space disturbance force observer is then established in this paper to observe the disturbance modal forces for the feedforward control. For obtaining the feedforward and feedback control gains with the optimal sense, the nearly optimal control law is derived, where the modal disturbance forces are regarded as additional states. The vibration control performances and the asymptotic properties of the control law are discussed.


Author(s):  
Xiaoyun Wang ◽  
James K. Mills

A substructuring approach to derive dynamic models for closed-loop mechanisms is applied to model a flexible-link planar parallel platform with Lead Zirconate Titanate (PZT) transducers. The Lagrangian Finite Element (FE) formulation is used to model flexible linkages, in which translational and rotary degrees of freedom exist. Craig-Bampton mode sets are extracted from these FE models and then used to assemble the dynamic model of the planar parallel platform through the application of Lagrange’s equation and the Lagrange multiplier method. Electromechanical coupling models of surface-bonded PZT transducers with the host flexible linkages are introduced to the reduced order dynamic models of flexible linkages. The assembled system dynamic model with moderate model order can represent essential system dynamic behavior and maintain kinematic relationships of the planar parallel platform. A Proportional, Integral, and Derivative (PID) control law is used as the motion control law. Strain rate feedback (SRF) active vibration control is selected as the vibration control law. Motion control simulation results with active vibration control and simulation results without active vibration control are compared. The comparison shows the effectiveness of active vibration control.


Sign in / Sign up

Export Citation Format

Share Document