scholarly journals Simulation on the Rotational Vibration of Helical Gears Considered Tooth Separation. 2nd Report. Equivalent Profile Error of Tooth Surface Error under Load.

1996 ◽  
Vol 62 (594) ◽  
pp. 713-720
Author(s):  
Yurong CAI
Author(s):  
Yuichi Ogawa ◽  
Shigeki Matsumura ◽  
Haruo Houjoh ◽  
Taichi Sato

Lead form modification has been used to avoid detrimental effects of tooth helix deviation caused by manufacturing error or misalignment of a gear pair from the viewpoint of tooth strength on gear design. Hence parabolic crowning, elliptic crowning and end relief are adopted conventionally as a typical modified lead form. However the effect of both the shape and the amount of the lead modification on dynamic characteristics of the gear pair has not been made clear enough yet. Using the simulator which was developed by authors and is capable of analyzing vibration response of a pair of spur gear considering tooth surface deviation, the present paper shows that the effect of a proper lead crowning is to maintain the designed dynamic behavior even when tooth helix slope deviation exists, or that is equivalent to misalignment. An optimum form of end relief approximated to that of crowning is determined by the least square method. In addition, since the amplitude of gear vibration is sensitive to the tooth profile error, importance of considering tip relief is presented.


Author(s):  
Shun-xing Wu ◽  
Hong-zhi Yan ◽  
Zhi-yong Wang ◽  
Ren-gui Bi ◽  
Zhi Chen ◽  
...  

Author(s):  
Masao Nakagawa ◽  
Dai Nishida ◽  
Deepak Sah ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Planetary gear trains (PGTs) are widely used in various machines owing to their many advantages. However, they suffer from problems of noise and vibration due to the structural complexity and giving rise to substantial noise, vibration, and harshness with respect to both structures and human users. In this report, the sound level from PGTs is measured in an anechoic chamber based on human aural characteristic, and basic features of sound are investigated. Gear noise is generated by the vibration force due to varying gear tooth stiffness and the vibration force due to tooth surface error, or transmission error (TE). Dynamic TE is considered to be increased because of internal and external meshing. The vibration force due to tooth surface error can be ignored owing to almost perfect tooth surface. A vibration force due to varying tooth stiffness could be a major factor.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Alessio Artoni ◽  
Massimo Guiggiani

The teeth of ordinary spur and helical gears are generated by a (virtual) rack provided with planar generating surfaces. The resulting tooth surface shapes are a circle-involute cylinder in the case of spur gears, and a circle-involute helicoid for helical gears. Advantages associated with involute geometry are well known. Beveloid gears are often regarded as a generalization of involute cylindrical gears involving one additional degree-of-freedom, in that the midplane of their (virtual) generating rack is inclined with respect to the axis of the gear being generated. A peculiarity of their generation process is that the motion of the generating planar surface, seen from the fixed space, is a rectilinear translation (while the gear blank is rotated about a fixed axis); the component of such translation that is orthogonal to the generating plane is the one that ultimately dictates the shape of the generated, envelope surface. Starting from this basic fact, we set out to revisit this type of generation-by-envelope process and to profitably use it to explore peculiar design layouts, in particular for the case of motion transmission between skew axes (and intersecting axes as a special case). Analytical derivations demonstrate the possibility of involute helicoid profiles (beveloids) transmitting motion between skew axes through line contact and, perhaps more importantly, they lead to the derivation of designs featuring insensitivity of the transmission ratio to all misalignments within relatively large limits. The theoretical developments are confirmed by various numerical examples.


2021 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Hunor András Gyéresi ◽  
Luciana Cristea ◽  
Márton Máté

Abstract The precision of gears has a major influence on the quality of the transmission. If the gear cannot be finished by grinding, the precision of the generating tool becomes essential. Archimedean spiral toothline cylindrical gears are obtained by reciprocate meshing using a milling cutter built up by individual cutters, organized in groups. The profiles of edges must be realized with a minimal profile error. In order to ensure the quality and the precision of the meshed tooth surface, and also the profile constancy after re-sharpening, relief faces must be realized by a grinding relieving operation. A secondary effect of the kinematics of relieving end the spatial extent of the grinding wheel a post undercut results and this produces an inevitable profile error. The present paper discusses a possible grinding wheel setting that produces a maximum theoretical profile error under 1μm along the whole re-sharpening reserve of the cutter. The proposed setting can be realized on a classical relieving lathe.


Author(s):  
Yurong Cai ◽  
Teru Hayashi

Abstract The nonlinear equation for the rotational vibration of a pair of spur gears has a restriction that the analytical solution of the equation cannot be obtained. In this paper, the linear equation of vibration is derived theoretically and its physical model, i.e. the linear model of vibration is presented. The analytical solution of the linear equation, which is derived by analytical method, agrees well with the numerically calculated result by the nonlinear equation. By analyzing the analytical solution of the linear equation in detail, we clarified the relation between the waveforms of the vibration and the profile error of gear pairs, and also found that the effect of the contact ratio to the vibration is large and complex. The equivalent error, accounting for effects of the static load, the time-varying stiffness and the profile error of gear pairs, is proposed in this paper. It can be considered as promising for evaluating the profile error, because the vibration of gear pairs is excited mainly by the equivalent error. Finally, for confirming the above results, the vibration of two tested gear pairs has been measured by an experimental set-up for this purpose.


Sign in / Sign up

Export Citation Format

Share Document