tooth surface modification
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 8)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110377
Author(s):  
Xigui Wang ◽  
Jie Tang ◽  
Yongmei Wang ◽  
Jiafu Ruan ◽  
Siyuan An

The pre-research project aims to propose a method of optimizing tooth surface modification (TSM) fitting under thermoelastic lubrication (TEL) conditions to reveal the most popular and concerned mechanism issues in the field of mechanical engineering. This is an exploratory study, mainly considering the gear comprehensive error and TSM state of TEL contact interfaces are extremely harsh, which complicates simulation analysis and optimal design. TSM simulation has fitted numerically agreement with optimized results obtained experimentally, which means that they can, whether isolated or by using a multiscale coupling method, start to be adopted to revise, and verify meta-models for thermoelastic characteristics (TECs) under TEL problems. This subject involves the TSM fitting of the theoretical teeth surface superimposed structure, and performs 3D and diagonal modification optimization design, obtains the modified surface position and normal vectors, according to load teeth contact analysis (LTCA), a variety of optimized modification models are established and complex curved surfaces are analyzed to fit the actual gear teeth surface thermoelastic contact numerical simulation, which has been further demonstrated and expressed in the type experiment combined with actual key working conditions and multiple influencing parameters, which is of great significance to the development of modern gear transmission system.


2021 ◽  
Vol 160 ◽  
pp. 104299
Author(s):  
Bing Yuan ◽  
Geng Liu ◽  
Yanjiong Yue ◽  
Lan Liu ◽  
Yunbo Shen

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guosheng Han ◽  
Bing Yuan ◽  
Guan Qiao

Mesh misalignment in mating the gear tooth surface is common and difficult to be determined accurately because of system deformation and bearing clearances, as well as manufacturing and assembly errors. It is not appropriate to consider the mesh misalignment as a constant value or even completely ignore it in the tooth surface modification design. Aiming to minimize the expectation and variance of static transmission error (STE) fluctuations in consideration of mesh misalignment tolerance, a multiobjective optimization model of tooth surface modification parameters is proposed through coupling the NSGA-II algorithm and an efficient loaded tooth contact analysis (LTCA) model. The modified tooth flank of helical gear pairs is defined using 6 design variables which are related to profile modification, lead modification, and bias modification. The influences of mesh misalignment on time-dependent meshing stiffness (TDMS) and STE of unmodified and modified helical gear pairs are investigated. Then, the dynamic transmission error (DTE) of modified helical gears in consideration of mesh misalignment is discussed. The results indicate that the designed modified tooth surface shows good robustness to mesh misalignment.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yanchao Zhang ◽  
Jinfu Du ◽  
Jin Mao ◽  
Min Xu

This study is to systematically analyze the influences of time-varying meshing stiffness (TVMS) and meshing impact on the dynamic characteristics of high-speed gear transmission in the two-stage pure electric vehicle (PEV) gearbox, as well as the effect of tooth surface modification on the vibration control. First, the dynamic model was established, and the TVMS and meshing impact were calculated. Then, the vibration characteristics of single-stage and two-stage helical gear transmission were analyzed under three different excitation conditions, excitation of TVMS, excitation of meshing impact, and excitation of both. The results show that the effect of rotating speed on the system vibration is not significant outside the resonant region under the excitation of TVMS, while the effect of meshing impact becomes the main exciting component with the increasing rotating speed. The vibrations of the two gear pairs interact with each other; the vibration frequency of one gear pair contains both its meshing frequency and the coupling frequency of the other gear pair. Tooth surface modification in the input-stage gear pair can reduce the vibration of both the input- and the output-stage obviously; that is, more attention should be paid to the input-stage gear pair in the modification design of PEV gearbox.


Sign in / Sign up

Export Citation Format

Share Document