The Simulation Analysis of Semi-Active Suspension System in Vehicle Based on Sliding Mode Control with Varying Structure

2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.

Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


2020 ◽  
pp. 107754632094097
Author(s):  
Qiang Chen ◽  
Yong Zhang ◽  
Chengwei Zhu ◽  
Jinbo Wu ◽  
Ye Zhuang

A semiactive seat suspension control method is proposed in this study and applied to attenuate the vibration of the commercial truck seat for enhancing its ride comfort. The semiactive seat suspension system with a magnetorheological damper behaves with undesirable nonlinear properties. The proposed controller is a typical nonlinear controller, which takes the ideal sky-hook controller as the reference model and forces the tracking error vector. The controller has achieved great performance of attenuating vibration and is robust to parameter uncertainties and external disturbances. The relaxation oscillation phenomenon and convergence were also analyzed by the contribution of the phase portrait. As the phase portrait depicted, the sky-hook controller, a weakly nonlinear system, could be approximated by the equivalent linear approximate model. However, the proposed controller, the sky-hook sliding mode controller, is a strongly nonlinear system, which could not be linearized by the regular perturbation theory, and the criterion is given by the phase portrait. The experiment results showed good agreement with the simulation results, and some other matters encountered were also analyzed in the process of application.


Author(s):  
Amirhossein Kazemipour ◽  
Alireza B Novinzadeh

In this paper, a control system is designed for a vehicle active suspension system. In particular, a novel terminal sliding-mode-based fault-tolerant control strategy is presented for the control problem of a nonlinear quarter-car suspension model in the presence of model uncertainties, unknown external disturbances, and actuator failures. The adaptation algorithms are introduced to obviate the need for prior information of the bounds of faults in actuators and uncertainties in the model of the active suspension system. The finite-time convergence of the closed-loop system trajectories is proved by Lyapunov's stability theorem under the suggested control method. Finally, detailed simulations are presented to demonstrate the efficacy and implementation of the developed control strategy.


2020 ◽  
Vol 10 (12) ◽  
pp. 4320 ◽  
Author(s):  
Dou Guowei ◽  
Yu Wenhao ◽  
Li Zhongxing ◽  
Amir Khajepour ◽  
Tan Senqi

This paper presents a control method based the lateral interconnected air suspension system, in order to improve the road handling of vehicles. A seven-DOF (Degree of freedom) full-vehicle model has been developed, which considers the features of the interconnected air suspension system, for example, the modeling of the interconnected pipelines and valves by considering the throttling and hysteresis effects. On the basis of the well-developed model, a sliding mode controller has been designed, with a focus on constraining and minimizing the roll motion of the sprung mass caused by the road excitations or lateral acceleration of the vehicle. Moreover, reasonable road excitations have been generated for the simulation based on the coherence of right and left parts of the road. Afterwards, different simulations have been done by applying both bumpy and random road excitations with different levels of roughness and varying vehicle lateral accelerations. The simulation results indicate that the interconnected air suspension without control can improve the ride comfort, but worsen the road handling performance in many cases. However, by applying the proposed sliding mode controller, the road handling of the sprung mass can be improved by 20% to 85% compared with the interconnected or non-interconnected mode at a little cost of comfort.


2010 ◽  
Vol 159 ◽  
pp. 644-649
Author(s):  
Jing Hua Zhao ◽  
Wen Bo Zhang ◽  
He Hao

Based on the analysis of performance of vehicle and its suspension, half vehicle model of five DOF and road model were built and the dynamic equations of half vehicle were derived according to the parameters of a commercial vehicle. In addition, a novel fuzzy logic control system based on semi-active suspension was introduced to achieve the optimal vibration characteristic, with changing the adjustable dampers according to dynamic vertical body acceleration signal. The fuzzy control was designed based on non-reference model method that acceleration value was sent to the fuzzy controller directly. And then, simulation analysis of semi-active suspension with fuzzy control method were implemented on the B-class road surface. The results showed that the semi-active suspension control system introduced in this paper has better performance on vieicle vibration characteristic, compared to passive suspension.


Author(s):  
Chi Nguyen Van

This paper presents the active suspension system (ASS) control method using the adaptive cascade control scheme. The control scheme is implemented by two control loops, the inner control loop and outer control loop are designed respectively. The inner control loop uses the pole assignment method in order to move the poles of the original system to desired poles respect to the required performance of the suspension system. To design the controller in the inner loop, the model without the noise caused by the road profile and velocity of the car is used. The outer control loop then designed with an adaptive mechanism calculates the active control force to compensate for the vibrations caused by the road profile and velocity of the car. The control force is determined by the error between states of the reference model and states of suspension systems, the reference model is the model of closed-loop with inner control loop without the noise. The simulation results implemented by using the practice date of the road profile show that the capability of oscillation decrease for ASS is quite efficient


Author(s):  
S¸ahin Yıldırım ◽  
I˙kbal Eski

This paper investigates a new robust model based neural controller for active suspension system’s vibrations via feedback control approach. The proposed model reference adaptive control system consists of a neural controller, a robust feedback controller, a third-order linear reference model and dynamics of active suspension system. The simulation examples with various standard input signals are included to demonstrate the effectiveness of the proposed control method and show significant improvement over the existing PID controller method. The robustness of the proposed neural controller is also analyzed with white noise disturbances on the suspension system. It is shown that the control system is robustly stable for all road disturbances. Finally, this kind of control approach could be employed in real time vehicle applications.


Sign in / Sign up

Export Citation Format

Share Document