scholarly journals An influence of nonlinear restoring force characteristics on transient response of a structure supported by rigid link mechanics including nonlinear springs

2015 ◽  
Vol 81 (832) ◽  
pp. 15-00390-15-00390
Author(s):  
Fumihiko KOSAKA ◽  
Tsuyoshi INOUE ◽  
Kentaro TAKAGI
1975 ◽  
Vol 42 (4) ◽  
pp. 891-893 ◽  
Author(s):  
S. R. Soni ◽  
K. Surendran

Transient response of second-order systems with a slightly nonlinear restoring force is analyzed for random inputs using perturbation technique. Mean square responses, up to the second-order of correction, are obtained for white and exponentially decaying correlation functions.


2021 ◽  
pp. 147592172199474
Author(s):  
Bin Xu ◽  
Ye Zhao ◽  
Baichuan Deng ◽  
Yibang Du ◽  
Chen Wang ◽  
...  

Identification of nonlinear restoring force and dynamic loadings provides critical information for post-event damage diagnosis of structures. Due to high complexity and individuality of structural nonlinearities, it is difficult to provide an exact parametric mathematical model in advance to describe the nonlinear behavior of a structural member or a substructure under strong dynamic loadings in practice. Moreover, external dynamic loading applied to an engineering structure is usually unknown and only acceleration responses at limited degrees of freedom of the structure are available for identification. In this study, a nonparametric nonlinear restoring force and excitation identification approach combining the Legendre polynomial model and extended Kalman filter with unknown input is proposed using limited acceleration measurements fused with limited displacement measurements. Then, the performance of the proposed approach is first illustrated via numerical simulation with multi-degree-of-freedom frame structures equipped with magnetorheological dampers mimicking nonlinearity under direct dynamic excitation or base excitation using noise-polluted measurements. Finally, a dynamic experimental study on a four-story steel frame model equipped with a magnetorheological damper is carried out and dynamic response measurement is employed to validate the effectiveness of the proposed method by comparing the identified dynamic responses, nonlinear restoring force, and excitation force with the test measurements. The convergence and the effect of initial estimation errors of structural parameters on the final identification results are investigated. The effect of data fusion on improving the identification accuracy is also investigated.


2021 ◽  
Vol 87 (3) ◽  
Author(s):  
R. Nemati Siahmazgi ◽  
S. Jafari

The purpose of the present paper is to investigate the generation of soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. The electric field of the laser beam interacts with the nanocluster and leads to ionization of the cluster atoms, which then produces a nanoplasma. Because of the nonlinear restoring force in an anharmonic nanoplasma, the fluctuations and heating rate of, as well as the power radiated by, the electrons in the nanocluster plasma will be notably different from those arising from a linear restoring force. By comparing the nonlinear restoring force state (which arises from an anharmonic cluster) with that of the linear restoring force (in harmonic clusters), the cluster temperature specifically changes at the resonant frequency relative to the linear restoring force, while the variation of the anharmonic cluster radius is almost identical to that of the harmonic cluster radius. In addition, it is revealed that a sharp peak of X-ray emission arises after some picoseconds in deuterium, helium, neon and argon clusters.


2021 ◽  
Vol 11 (11) ◽  
pp. 4898
Author(s):  
Jin-Seon Kim ◽  
Ju-Seong Jung ◽  
Dong-Keun Jung ◽  
Eui-Yong Kim ◽  
Kang-Seok Lee

The present study proposes a new seismic retrofitting method using a concrete-filled tube modular frame (CFT-MF) system, a novel technique to overcome and improve the limitations of existing seismic strengthening methods. This CFT-MF seismic retrofitting method makes the most of the advantages of both concrete and steel pipes, thereby significantly improving constructability and increasing integration between the existing structure and the reinforcement joints. This method falls into the category of typical seismic retrofitting methods that focus on increasing strength, in which the required amount of seismic reinforcement can be easily estimated. Therefore, the method provides an easy solution to improving the strength of existing reinforced concrete (RC) structures with non-seismic details that are prone to shear failure. In the present study, a full-size two-story test frame modeled from existing domestic RC structures with non-seismic details was subjected to pseudo-dynamic testing. As a result, the effect of the CFT-MF system, when applied to existing RC structures, was examined and verified, especially as to its seismic retrofitting performance, i.e., restoring force characteristics, stiffness reinforcement, and seismic response control. In addition, based on the pseudo-dynamic testing results, a restoring force characteristics model was proposed to implement non-linear dynamic analysis of a structure retrofitted with the CFT-MF system (i.e., the test frame). Finally, based on the proposed restoring force characteristics, non-linear dynamic analysis was conducted, and the results were compared with those obtained by the pseudo-dynamic tests. The results showed that the RC frame (building) with no retrofitting measures applied underwent shear failure at a seismic intensity of 200 cm/s2, the threshold applied in seismic design in Korea. In contrast, in the frame (building) retrofitted with the CFT-MF system, only minor earthquake damage was observed, and even when the maximum seismic intensity (300 cm/s2) that may occur in Korean was applied, small-scale damage was observed. These results confirmed the validity of the seismic retrofitting method based on the CFT-MF system developed in the present study. The non-linear dynamic analysis and the pseudo-dynamic test showed similar results, with an average deviation of 10% or less in seismic response load and displacement.


Sign in / Sign up

Export Citation Format

Share Document