lower structure
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 24)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
pp. 174569162110007
Author(s):  
Mark A. McDaniel ◽  
Elizabeth J. Marsh ◽  
Reshma Gouravajhala

In this article, we highlight an underappreciated individual difference: structure building. Structure building is integral to many everyday activities and involves creating coherent mental representations of conversations, texts, pictorial stories, and other events. People vary in this ability in a way not generally captured by other better known concepts and individual difference measures. Individuals with lower structure-building ability consistently perform worse on a range of comprehension and learning measures than do individuals with higher structure-building ability, both in the laboratory and in the classroom. Problems include a range of comprehension processes, including encoding factual content, inhibiting irrelevant information, and constructing a cohesive situation model of a text or conversation. Despite these problems, recent research is encouraging in that techniques to improve the learning outcomes for low-ability structure builders have been identified. We argue that the accumulated research warrants the recognition of structure building as an important individual difference in cognitive functioning and that additional theoretical work is needed to understand the underpinnings of structure-building deficits.


2021 ◽  
Vol 4 (3) ◽  
pp. 615
Author(s):  
Orlando Orlando ◽  
Gregorius Sandjaja Sentosa

Foundation is the lower structure of the building located below the ground that has the function to bear the load of the building. The building has been standing for ± 5 years and the slope of the building is ± 1-20. The authors analyzed soil bearing capacity, settlement and the slope of the building and the possibility of repairing the building for reuse. In 1 pile cap there are 4 bore piles with a depth of 6m-12m, because the pile cap data is not obtained then the size and thickness is assumed and the soil data used is secondary data without lab data derived from soil data in locations adjacent to the building site that is ±100m from the building site. After the analysis, soil bearing capacity is not strong to bear the dead load of the building when using a foundation with a depth of 6m-12m, there is a possibility that the foundation used is not suitable and there is a reduction in the load of the building due to the presence of other buildings that are adjacent to the building in the analysis resulting in a considerable decrease and slope of the building.Fondasi adalah struktur bagian bawah bangunan yang terletak di bawah permukaan tanah yang mempunyai fungsi memikul beban bangunan. Bangunan ini sudah berdiri selama ± 5 tahun dan  kemiringan bangunan sebesar ± 1-20. Penulis menganalisis daya dukung tanah, penurunan tanah dan kemiringan bangunan dan kemungkinan memperbaiki bangunan agar dapat digunakan kembali. Pada 1 pile cap terdapat 4 buah bore pile dengan kedalaman 6m–12m, karena data pile cap  tidak diperoleh maka ukuran dan ketebalannya diasumsikan dan data tanah yang digunakan adalah data sekunder tanpa data lab yang berasal dari data tanah di lokasi berdekatan dengan lokasi bangunan yang berjarak ±100m dari lokasi bangunan. Setelah di analisis, daya dukung tanah tidak kuat untuk menahan beban mati bangunan bila menggunakan fondasi dengan kedalaman 6m–12m dan ada kemungkinan fondasi yang digunakan tidak sesuai dan terjadi reduksi beban bangunan karena adanya bangunan lain yang berdempetan dengan bangunan yang di analisis sehingga mengakibatkan penurunan dan kemiringan bangunan yang cukup besar.


2021 ◽  
Vol 4 (3) ◽  
pp. 789
Author(s):  
Andree Savio ◽  
Sunarjo Leman

The jetty is the most important facility in the port because it is connected between the sea and the land. The jetty structure consists of the upper structure (beams, plates and pile caps) and the lower structure (piles). The upper structure uses reinforced concrete as the base material and the lower structure can use steel or concrete material. In designing the piles on the jetty, the depth of the fixed point is not at the seabed depth, but below the seabed. It is necessary to conduct research on the depth of the pile fixed point at KNP jetty Southeast Sulawesi. Based on the OCDI 2002 (Overseas Coastal Area Development Institute of Japan) using the virtual fixed point method (1/β), the depth of the fixed point on the KNP jetty is 24 m, meanwhile according to the lateral spring method the KNP jetty has a fixed point depth of 25,6 m. and by adding a lateral spring to the pile in the virtual fixed point method, it can also make the model more efficient with a smaller deflection of 6,43% for deflection due to earthquake in the x direction and 7,25% for deflection due to earthquake in y direction. ABSTRAKDermaga merupakan fasilitas yang paling penting pada pelabuhan karena menghubungkan antara laut dan daratan. Struktur dermaga terdiri dari struktur atas (balok, pelat dan pile cap) dan struktur bawah (tiang pancang). Struktur atas menggunakan bahan dasar beton bertulang dan struktur bawah dapat menggunakan bahan baja atau beton. Dalam mendesain tiang pancang pada dermaga, kedalaman titik jepit tidak berada pada kedalaman seabed tetapi berada dibawah seabed. Perlu dilakukan penelitian tentang kedalaman titik jepit tiang pancang. Studi kasus yang dibahas pada penelitian ini adalah dermaga yang berlokasi di Kendari, Sulawesi Tenggara. Dermaga tersebut dikenal dengan nama dermaga “KNP”. Berdasarkan OCDI (Overseas Coastal Area Development Institute of Japan) tahun 2002 dengan menggunakan metode virtual fixed point (1/β) memiliki kedalaman titik jepit pada dermaga “KNP” sebesar 24 m, sedangkan menurut metode pegas lateral pada dermaga “KNP” memiliki kedalaman titik jepit sebesar 25,6 m dan dengan menambahkan pegas lateral pada tiang pancang dalam metode virtual fixed point juga dapat membuat model lebih efisien dengan defleksi yang lebih kecil sebesar 6,43% untuk defleksi akibat gempa arah x dan 7,25% untuk defleksi akibat gempa arah y.


EXTRAPOLASI ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 30-43
Author(s):  
Ivan Oky Febry Fambudi ◽  
Bantot Sutriono ◽  
Retno Trimurtiningrum ◽  
Nurul Rochmah

AbstractThis paper presents the alternative design of Gunawangsa Gresik Apartment using Earthquake Resistance Steel Structure. The existing structure of Gunawangsa Gresik is concrete. Steel structure is being considered as the alternative design because steel material has better ductility and lower weight than concrete which is good for earthquake resistant buildings.Gunawangsa Apartement would be designed with moment resisting frames structure system in accordance with the provisions of SNI 1726:2012 concerning earthquake-resistant structure planning and SNI 1729:2015 concerning the building steel structures..From the results of the design, the steel cross-section profile dimensions used as beams are WF 400.200, WF 350.175, WF 300.150, WF 250.125, WF 200.100, and WF 175.90. Whereas for cross-section profiles are King cross K800.300, K700.300, K588.300, K600.200, and K500.200. Furthermore, in the substructure/lower structure, the foundation were designed with 8 meters deep, and diameter of 60 cm. AbstrakArtikel ini membahas tentang desain alternatif Apartemen Gunawangsa Gresik menggunakan struktur baja tahan gempa. Desain eksisting Apartemen Gunawangsa Gresik berupa struktur beton. Struktur baja dipertimbangkan sebagai alternatif desain karena material baja memiliki daktilitas yang lebih baik dan bobot yang lebih rendah daripada beton, dimana hal tersebut baik untuk bangunan tahan gempa.Apartemen Gunawangsa akan dirancang dengan sistem struktur rangka penahan momen sesuai dengan ketentuan SNI 1726: 2012 tentang perencanaan struktur tahan gempa dan SNI 1729: 2015 tentang struktur baja bangunan.Dari hasil desain, dimensi profil penampang baja yang digunakan sebagai balok adalah WF 400.200, WF 350.175, WF 300.150, WF 250.125, WF 200.100, dan WF 175.90. Sedangkan untuk profil penampang adalah King cross K800.300, K700.300, K588.300, K600.200, dan K500.200. Selanjutnya, pada substruktur / struktur bawah, pondasi dirancang dengan kedalaman 8 meter, dan diameter 60 cm.


2021 ◽  
Vol 4 (1) ◽  
pp. 205
Author(s):  
Alfandy Firmando ◽  
Hendy Wijaya ◽  
Amelia Yuwono

In Indonesia, many active faults that can cause earthquakes, one of them is the Palu Koro fault which extends approximately 240 km from the north (Palu City) to the south (Malili) to the Gulf of Bone. The effect of this earthquake fault caused enormous damage to infrastructure. The lower structure, namely the foundation, is part of a structure that transmits the load received from axial and lateral forces which then continues into the ground below. This foundation plays a big role in making the structure stand firm; however, pile failures still often occur in Indonesia. Because of that in this journal will be analyzing of the time history of earthquake faults in the pile foundation system. This analysis requires the assistance of a geotechnical based program. The program can process the data provided so that it produces a result that can be analyzed. The results can be in the form of internal forces, and displacement. The result of this curve we can see the effect of the earthquake fault on the foundation. From these results, it is expected to provide data to help plan structures to be built in areas prone to earthquake faults.AbstrakWilayah Indonesia banyak terdapat sesar aktif yang dapat menimbulkan gempa salah satunya sesar aktif di Sulawesi adalah sesar Palu Koro yang memanjang kurang lebih 240 km dari utara (Kota Palu) ke selatan (Malili) hingga Teluk Bone. Pengaruh gempa sesar ini menimbulkan kerusakan yang sangat besar dalam infrastruktur. Struktur bawah yakni Fondasi ialah bagian dari suatu struktur yang meneruskan beban yang diterima dari gaya aksial dan lateral yang kemudian meneruskan ke dalam tanah di bawahnya. Fondasi inilah berperan besar membuat struktur tersebut dapat berdiri kukuh akan tetapi kegagalan tiang masih sering terjadi di Indonesia. Dengan demikian pada jurnal ini dilakukan analisis riwayat waktu gempa sesar pada sistem fondasi tiang. Analisis ini membutuhkan bantuan program berbasis geoteknik. Program dapat mengolah data-data yang diberikan sehingga menghasilkan suatu hasil yang dapat di analisis. Hasil tersebut dapat berupa kurva gaya dalam dan perpindahan. Hasil dari kurva ini kita dapat melihat pengaruh dari gempa sesar tersebut terhadap fondasi. Dari hasil tersebut diharapkan dapat memberikan data-data untuk membantu merencanakan bangunan struktur yang akan dibangun di wilayah yang rawan akan gempa sesar.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shi Jiulin ◽  
Yan Shaohong ◽  
Xu Zhuhe ◽  
Xue Jisheng ◽  
Kaikai Zhao ◽  
...  

Considering the large mined area, wide strata moving range, strong mine pressure occurrence, and difficult roof control for the fully mechanized top coal caving in 20 m ultra-thick coal seams, this study analyzes the strata structure evolution and mine pressure occurrence behavior through field test, numerical simulation, and theoretical analysis. Based on the mine condition of the Tashan Coal Mine in the Datong mining area, mechanical models are established for the compound overlying structures. The following can be demonstrated from this study: (1) The hard strata can form three different compound spatial structures at different positions in the overlying rock strata, including the lower combined cantilever structure I, the middle combined cantilever structure II, and the upper hinged structure. (2) Failure of the higher structure can induce compression on the lower structure, which changed the break span of the lower structure. (3) “Simultaneous and nonsimultaneous structural failures” of the compound spatial structure were caused by the variation of the break span of the multilayered structure. (4) Based on the weighting characteristics, there were three stages during work face weighting, including a gradual pressure increase stage (Stage I), an accelerated pressure increase stage (Stage II), and a fast pressure increase stage (Stage III). (5) The mine pressure occurrence demonstrated a “small to medium and to large” feature. (6) Prefracturing techniques should be additionally incorporated to prevent simultaneous failure of the multilayered structure. Findings of the work can demonstrate the emergence of strong mine pressure in the Datong mining area and have theoretical significance and reference value for maintaining safe mining in similar conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yufan Feng ◽  
Guanghua Sun ◽  
Xuejian Liang ◽  
Chenyang Liu ◽  
Yue Wang

To understand the mechanical properties of the backfill, to reveal the evolvement of micromechanical fissure of backfill, a uniaxial compression experiment was carried out for the full tailing cemented backfill. After loading, the microstructure of the specimens was observed by microscope and the pore characteristic parameters were analyzed. The results showed that the diameter of the initial damage hole of the backfill was mostly between 0 and 40 μm, the hole diameter increases gradually with the increase of pressure, and the hole diameter reached more than 5000 μm in the postpeak damage stage. The upper structure of the backfill specimen is compact while the lower structure is relatively loose. The cracks and interfaces between tailings particles and cement paste are mechanical weak surfaces, where the cracks are mainly generated and propagated. The tip of microfractures in the backfill is damaged by the influence of stress concentration. In the failure process, both surface porosity and fracture density decrease first and then increase, and the average pore diameter increases gradually. The results have guiding significance for the study of backfill mechanical properties and goaf filling design.


2020 ◽  
Vol 3 (3) ◽  
pp. 695
Author(s):  
Willy Ericson ◽  
Hendy Wijaya ◽  
Amelia Yuwono

Foundation is part of the structure that was build first and the most important part to guarantee the establishment of a building. The foundation function in general are to carry and distribute building loads into the ground. The loads channeled into the ground in the form of axial loads and lateral loads. Generally for high buildings used in the form of foundation piles or bored piles. To find out the design capabilities of a building in maintaining its robustness, naturally some analysis of the lower and upper structures needed. Especially in the lower structure, which is the foundation of a single pile or a group of piles, one of which can be done is a pushover analysis of the pile. By conducting pushover analysis on a pile foundation, the level of performance of the single pile foundation and group pile can be determined. From the results of pole pushover analysis will be obtain including the maximum deflection value and the melting value of pole. From the two data, it can be seen the value of the ductility of various types of pile foundation materials used. In this case, this journal will calculate the ductility and overstrength of a single pile foundation and group pile with variation dimensions.


Author(s):  
Fadjar Wahyu Rahardjo

The record building is located on the location of the B campus of the Hasyim Asy'ari University Tebuireng - Jombang which functions as an academic and administrative center for all faculties. The planned improvement of the new rectorate building consists of 7 floors with a height of 32.40 m and a building area of 574 m2. The main purpose of the research is to produce a picture of the structure of the new rector's building. The new rector's building structure planning uses a single system in the form of a special moment bearing frame system (SRPMK) and modeling uses an application program to calculate the moment and reaction of the components of floor plates, stairs, beams, columns, sloof and poerplat with earthquake load design using the equivalent static method. The regulations used for planning use SNI 1726-2012, SNI 2847-2013, SNI 1727-2013 and PPIUG-1983. The results of analysis and design in the new rectorate building produce primary structural components in the form of beams B1 = 450 x 600, B3 = 350 x 500 and columns K1 = 700 x 700, K2 = 600 x 600 that have met the cross section requirements for special moment bearing frame systems and the mechanism of the Strong Column Weak Beam. Secondary structural components in the form of plates with thickness = 13 cm. Lower structure components are SLO SL = 400 x 800 and template P1 = 2100 x 2100 x 650 and 35 cm minile at a depth of 14 meters.


Sign in / Sign up

Export Citation Format

Share Document