scholarly journals Comparative Study on Quantification of Total Catechins Using UV-Vis Spectrophotometric Method and High Performance Liquid Chromatography Techniques

2021 ◽  
Vol 37 (1) ◽  
pp. 136-142
Author(s):  
Sitharanjan Kalidass ◽  
Karuppannau Daiyarvijaya ◽  
Rajagopal Raj Kumar

Bioavailability of catechinsin wider range of plants was established earlier and it’s utility as medicine against cardiovascular disease, cancer, etc. were also demonstrated. Recent techniques in relation to quantitative analysis of total catechins seem to be laborious and time consuming process to handle huge number of samples. Established spectrophotometry and HPLC methods developed earlier for quantitative determination of total catechins in tea extracts were compared in the present study.UV-Vis spectrophotometric method was adopted to monitor the absorbance at 500 nm of the reaction mixture (catechins and vanillin-H2SO4reagents). Hewlett Packard automated HPLC was used and equipped with Phenomenex Luna 5  phenyl-hexyl column fitted with a Phenomenex guard column. Binary elution was carried out using Mobile phase A (acetic acid and acetonitrile) and Mobile phase B (acetonitrile). Method adopted showed a good resolution of catechin fractions and was found to be accurate for the quantification of total catechins (sum of individual catechins). Results of the both the methods are comparable and variation amongst the two methods ranged between -3.59 and 2.79% among the clones and varied with seasons.As expected UPASI released tea clones exhibited variations in their bioavailability. Lean season edge over the cropping period sampling in terms of total catechins. Results obtained from both the methods are comparable. Two methods can be used for the routine quantitative analysis of total catechins; however, spectrophotometric method found to be simple, rapid and cost effective than that of HPLC method unless individual catechins composition is warranted.

2011 ◽  
Vol 8 (1) ◽  
pp. 340-346 ◽  
Author(s):  
Rajesh M. Kashid ◽  
Santosh G. Singh ◽  
Shrawan Singh

A reversed phase HPLC method that allows the separation and simultaneous determination of the preservatives methyl paraben (M.P.) and propyl paraben (P.P.) is described. The separations were effected by using an initial mobile phase of water: acetonitrile (50:50) on Inertsil C18 to elute P.P. and M.P. The detector wavelength was set at 205 nm. Under these conditions, separation of the two components was achieved in less than 10 min. Analytical characteristics of the separation such as precision, specificity, linear range and reproducibility were evaluated. The developed method was applied for the determination of preservative M.P. and P.P. at concentration of 0.01 mg/mL and 0.1 mg/mL respectively. The method was successfully used for determining both compounds in sucralfate suspension.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (11) ◽  
pp. 46-50
Author(s):  
Z. G Khan ◽  
◽  
S. S. Patil ◽  
P. K. Deshmukh ◽  
P. O. Patil

Novel, isocratic reversed phase high performance liquid chromatography method was developed and validated for the determination of enzalutamide (EZA) in bulk drug and pharmaceutical formulation. Efficient separation was achieved on PrincetonSPHER C18 100A, 5μ (250×4.6 mm) under the isocratic mode of elution using acetonitrile: water (80:20) % V/V as a mobile phase pumped in to the column at flow rate 1.0 mL/min. The effluent was monitored at 237.0 nm using UV detector. EZA was eluted in the given mobile phase at retention time (tR) of 3.2 minutes. The standard calibration curve was linear over the concentration range 10 - 60 μg/mL with correlation coefficient 0.997. The method was validated for accuracy, precision, sensitivity, robustness, ruggedness and all the resulting data treated statistically. The system suitability parameters like retention time, theoretical plates, tailing factor, capacity factor were found within the limit.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


2011 ◽  
Vol 94 (2) ◽  
pp. 446-452 ◽  
Author(s):  
Donglei Yu ◽  
Nathan Rummel ◽  
Badar Shaikh

Abstract An HPLC method was developed for the determination of albendazole (ABZ) and its metabolites, a sulfoxide (ABZSO), a sulfone (ABZSO2), and albendazole-2-aminosulfone (ABZ-2-NH2SO2), from yellow perch muscle tissue with adhering skin. The muscle tissue samples were made alkaline with potassium carbonate and extracted with ethyl acetate, followed by a series of liquidliquid extraction steps. After solvent evaporation, the residue was reconstituted in the initial mobile phase combination of the gradient. The mobile phase consisted of a buffer, 50 mM ammonium acetate (pH 4.0) in 10 methanolwater, and 100 acetonitrile. The gradient was from 20 acetonitrile to 85 acetonitrile. The analytes were chromatographed on an RP Luna C18(2) column and detected by fluorescence with excitation and emission wavelengths of 290 and 330 nm, respectively. The average recoveries from fortified muscle tissue for ABZ (20100 ppb), ABZ-SO (20200 ppb), ABZSO2 (8100 ppb), and ABZ-2-NH2SO2 (20100 ppb) were 85, 95, 101, and 86, respectively, with corresponding CV values of 9, 3, 6, and 4, respectively. Their LOQ values were 10, 10, 1, and 10 ppb, respectively. The procedure was applied to determine ABZ and its major metabolites in the incurred muscle tissue of yellow perch obtained after orally dosing the fish with ABZ.


1982 ◽  
Vol 65 (5) ◽  
pp. 1063-1065
Author(s):  
Stanley E Roberts

Abstract A high performance liquid chromatographic (HPLC) method is described for the quantitative determination of primidone in tablets. A ground tablet sample is diluted directly in the mobile phase, at a concentration of about 1 mg/mL of primidone, mixed and deaerated, and filtered. The resulting solution is then quantitated by HPLC. The average spike recoveries for the 50 mg and 250 mg tablets were 101.2% and 99.0%, respectively. The average recovery for an authentic mixture formulated at the 250 mg level was 100.1% with a relative standard deviation of 0.45%.


2012 ◽  
Vol 95 (2) ◽  
pp. 500-507 ◽  
Author(s):  
Philip R Machonis ◽  
Matthew A Jones ◽  
Brian T Schaneberg ◽  
Catherine L Kwik-Uribe

Abstract A single-laboratory validation study was performed for an HPLC method to identify and quantify the flavanol enantiomers (+)- and (–)-epicatechin and (+)- and (–)-catechin in cocoa-based ingredients and products. These compounds were eluted isocratically with an ammonium acetate–methanol mobile phase applied to a modified β-cyclodextrin chiral stationary phase and detected using fluorescence. Spike recovery experiments using appropriate matrix blanks, along with cocoa extract, cocoa powder, and dark chocolate, were used to evaluate accuracy, repeatability, specificity, LOD, LOQ, and linearity of the method as performed by a single analyst on multiple days. In all samples analyzed, (–)-epicatechin was the predominant flavanol and represented 68–91% of the total monomeric flavanols detected. For the cocoa-based products, within-day (intraday) precision for (–)-epicatechin was between 1.46–3.22%, for (+)-catechin between 3.66–6.90%, and for (–)-catechin between 1.69–6.89%; (+)-epicatechin was not detected in these samples. Recoveries for the three sample types investigated ranged from 82.2 to 102.1% at the 50% spiking level, 83.7 to 102.0% at the 100% spiking level, and 80.4 to 101.1% at the 200% spiking level. Based on performance results, this method may be suitable for routine laboratory use in analysis of cocoa-based ingredients and products.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bürge Aşçı ◽  
Şule Dinç Zor ◽  
Özlem Aksu Dönmez

Box-Behnken design was applied to optimize high performance liquid chromatography (HPLC) conditions for the simultaneous determination of potassium sorbate, sodium benzoate, carmoisine, allura red, ponceau 4R, and caffeine in commercial soft drinks. The experimental variables chosen were pH (6.0–7.0), flow rate (1.0–1.4 mL/min), and mobile phase ratio (85–95% acetate buffer). Resolution values of all peak pairs were used as a response. Stationary phase was Inertsil OctaDecylSilane- (ODS-) 3V reverse phase column (250 × 4.6 mm, 5 μm) dimensions. The detection was performed at 230 nm. Optimal values were found 6.0 pH, 1.0 mL/min flow rate, and 95% mobile phase ratio for the method which was validated by calculating the linearity (r2>0.9962), accuracy (recoveries ≥ 95.75%), precision (intraday variation ≤ 1.923%, interday variation ≤ 1.950%), limits of detection (LODs), and limits of quantification (LOQs) parameters. LODs and LOQs for analytes were in the range of 0.10–0.19 μg/mL and 0.33–0.63 μg/mL, respectively. The proposed method was applied successfully for the simultaneous determination of the mixtures of five food additives and caffeine in soft drinks.


2019 ◽  
Vol 4 (1) ◽  
pp. 19
Author(s):  
Engrid Juni Astuti ◽  
Roha Fakhri Naufal Ilham ◽  
Januar Rahman

Sodium benzoate is a preservative that is permitted to be used in food and beverages. The maximum limit for using sodium benzoate in food is 600 mg/L of ingredients calculated as benzoic acid. In this study, High-Performance Liquid Chromatography (HPLC) method using a PDA detector was used for sodium benzoate levels analysis in fruit juice drink circulating in Malang. The mobile phase composition used in this study was methanol pro-HPLC:aqua pro injection (70:30) and added glacial acetic acid to reach pH 3. The analysis was conducted at a wavelength of 245 nm, and the flow rate was set at 1.00 mL/minute. This method was validated against the parameters of selectivity, linearity, accuracy, and precision, and the results obtained to meet the validation requirements. The application of the HPLC method after being validated in the determination of sodium benzoate levels in fruit juice drink circulating in Malang resulted in selectivity Rs ≥ 1.5, linearity obtained in the range 0.1-5 μg/mL with a correlation coefficient (r) = 0,9999, recovery at a concentration of 80%, 100%, and 120% was 105.31%, and precision with an RSD value of 1.40%. Based on the results, it can be concluded that the validation method of analysis shows that the method can be used to determine sodium benzoate level using HPLC with PDA detectors for routine use in fruit juice drink samples.


2017 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Milena Cristina Ribeiro Souza Magalhães ◽  
Alisson Samuel Portes Caldeira ◽  
Hanna De Sousa Rocha Almeida ◽  
Sílvia Ligório Fialho ◽  
Armando Da Silva Cunha Junior

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of encapsulation efficiency of zidovudine in nanoparticules. The method was carried out in isocratic mode using 0.040M sodium acetate: methanol: acetonitrile: glacial acetic acid (880:100:20:2) as mobile phase, a C8 column at 25ºC and UV detection at 240 nm. The method was linear (r2 ˃ 0.99) over the range of 25.0-150.0 μg/mL, precise (RSD ˂ 5%), accurate (recovery = 100.5%), robust and selective. The validated HPLC-UV method can be successfully applied to determine the rate of zidovudine in nanoparticules.


2019 ◽  
Vol 9 (6-s) ◽  
pp. 136-142
Author(s):  
Pallavi Badhe ◽  
Smita Aher ◽  
Ravindranath B. Saudagar

Objective: Objective of the present analytical research work was to develop and validate Spectrophotometric method and High Performance Liquid Chromatographic method (HPLC Method) for the Apremilast bulk and tablets dosage form. Methods: A spectrophotometric method and a HPLC method have been developed and validated for estimation of APR in pharmaceutical oral dosage form. Method A (UV SPECTROMETRY Method): The stock and working standard solutions of the drugs were prepared in methanol. Standard solutions were scanned over the range of 400-200 nm in spectrum mode of spectrophotometer at medium scanning speed using UV spectrophotometer. The maximum absorbance for Apremilast was found at 230 nm. Method B (HPLC Method): The HPLC Method for Apremilast was developed using Cosmosil C18 (4.6mm x 250mm, Particle size: 5µm), as stationary particle, isocratic mode. Methanol: Water (80:20v/v) pH3 as mobile phase. Mobile phase was maintained at a flow rate of 0.8 ml/min and detection was carried out at 230 nm. Both the methods were validated in accordance with ICH guidelines Results: Apremilast was found to be linear in the concentration range of 2-10 µg/ml for spectrophotometric method and 10-50 µg/ml for HPLC method. Retention time was found to be 4.0 min for Apremilast. The amount of Apremilast in marketed formulation by spectrophotometric method was found to be 99.82 %, the amount of Apremilast in marketed formulation by HPLC method was found to be 99.98 %. Interpretation and Conclusion: Results of assay and validation study were found to be satisfactory. So, the methods can be successfully applied for the routine analysis of Apremilast. Keywords: HPLC, bulk dosage form, tablets,


Sign in / Sign up

Export Citation Format

Share Document