Strategies to Reduce High Heat Load on Feedlot Cattle

2013 ◽  
Author(s):  
J.B. Gaughan ◽  
T.M. Kunde ◽  
T.L. Mader ◽  
S.M. Holt ◽  
A. Lisle ◽  
...  
Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 211
Author(s):  
Gene Wijffels ◽  
Megan Sullivan ◽  
Stephen Anderson ◽  
Sally Stockwell ◽  
Suzie Briscoe ◽  
...  

Close-to-market weight grain fed cattle experience high heat loads during summer. There are health, welfare and production impacts on these high value animals. Two cohorts of 600 kg Black Angus steers (n = 12) were subjected to heatwave conditions during a thermal challenge in climate chambers. Frequent blood sampling enabled a detailed description of the metabolic and endocrine trajectories during high heat load and recovery in feedlot cattle. In high heat load ruminants, blood flow is diverted from the major organs impacting metabolic rate and cellular functions. The metabolic rate will slow with falls in the thyroid hormone plasma concentrations. Insulin and the adipokines gave an indifferent response. The high heat load cattle were hypoglycaemic and oxidising fatty acids. Liver involvement was evidenced by the build-up of bilirubin in plasma, and reduced release of cholesterol and ALP. Thermal challenge saw markedly increased plasma creatinine and urea implicating reduced glomerular filtration; although the kidneys were working to retain chloride ions to balance the loss of bicarbonate from the increased respiration rate. As heat load reduced during recovery, rumen temperature and respiration rate normalised and feed intake gradually returned. Plasma glucose levels increased also. With increased blood supply to the organs, there was a rise in liver enzymes into the blood, although liver function had not fully restored during the recovery period; plasma bilirubin concentrations were still high, and ALP and cholesterol levels low. Twelve days after the thermal challenge, most blood parameters had returned to normal and the steers had gained weight.


1996 ◽  
Vol 67 (9) ◽  
pp. 3351-3351
Author(s):  
K.W. Smolenski ◽  
R. Pahl ◽  
P. Doing ◽  
C. Conolly ◽  
B. Clark ◽  
...  
Keyword(s):  

1993 ◽  
Author(s):  
Albert T. Macrander ◽  
Ali M. Khounsary ◽  
Mark Graham
Keyword(s):  

2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Yuri Shvyd'ko ◽  
Sergey Terentyev ◽  
Vladimir Blank ◽  
Tomasz Kolodziej

Next-generation high-brilliance X-ray photon sources call for new X-ray optics. Here we demonstrate the possibility of using monolithic diamond channel-cut crystals as high-heat-load beam-multiplexing narrow-band mechanically stable X-ray monochromators with high-power X-ray beams at cutting-edge high-repetition-rate X-ray free-electron laser (XFEL) facilities. The diamond channel-cut crystals fabricated and characterized in these studies are designed as two-bounce Bragg reflection monochromators directing 14.4 or 12.4 keV X-rays within a 15 meV bandwidth to 57Fe or 45Sc nuclear resonant scattering experiments, respectively. The crystal design allows out-of-band X-rays transmitted with minimal losses to alternative simultaneous experiments. Only ≲2% of the incident ∼100 W X-ray beam is absorbed in the 50 µm-thick first diamond crystal reflector, ensuring that the monochromator crystal is highly stable. Other X-ray optics applications of diamond channel-cut crystals are anticipated.


Author(s):  
Michael Kivisalu ◽  
Amitabh Narain ◽  
Patcharapol Gorgitrattanagul ◽  
Ranjeeth Naik

For shear driven mm-scale flows, the traditional boiler and condenser operations pose serious problems of degraded performance (low heat-flux values, high pressure drops, and device-and-system level instabilities). The innovative devices are introduced for functionality and high heat load capabilities needed for shear dominated electronic cooling situations that arise in milli-meter scale operations, certain gravity-insensitive avionics-cooling and zero-gravity applications.


2002 ◽  
Vol 307-311 ◽  
pp. 735-738 ◽  
Author(s):  
S. Tamura ◽  
K. Tokunaga ◽  
N. Yoshida

1993 ◽  
Author(s):  
W.K. Lee ◽  
D. Mills
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document