GPS Real Time Vehicle Alarm Monitoring System Base on GPRS/CSD using the Embedded System

Author(s):  
Xing Jianping ◽  
Zhang Jun ◽  
Cheng Hebin ◽  
Li Changqing ◽  
Shi Xiaohui
Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Hyun Woo Oh ◽  
Ji Kwang Kim ◽  
Gwan Beom Hwang ◽  
Seung Eun Lee

Recently, advances in technology have enabled embedded systems to be adopted for a variety of applications. Some of these applications require real-time 2D graphics processing running on limited design specifications such as low power consumption and a small area. In order to satisfy such conditions, including a specific 2D graphics accelerator in the embedded system is an effective method. This method reduces the workload of the processor in the embedded system by exploiting the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time. Therefore, a variety of applications that require 2D graphics processing can be implemented with an embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems. The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm. The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing and to perform the line-drawing instead of the system processor. Moreover, the accelerator also distributes the workload of the processor core by removing the need for the core to access the frame buffer memory. We measure the performance of the accelerator by implementing the processor, including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility of realization by synthesizing using the 180 nm CMOS process.


2021 ◽  
Vol 37 (1) ◽  
pp. 193-203
Author(s):  
Renny Eka Purti ◽  
Azmi Yahya ◽  
Oh Yun Ju ◽  
Maryam Mohd Isa ◽  
Samsuzana Abdul Aziz

Abstract. A simple, portable, and rugged instrumentation system has been successfully developed and field demonstrated to monitor, measure, and record the harvested crop yield and selected machine field performance parameters from the typical rice combines in Malaysia. The complete system comprises of two ultrasonic sensors located at the combine header to measure the cutting width, microwave solid flow, and microwave moisture sensors at the combine clean grain auger to measure the flow rate and moisture content of the cleaned grains going into the grain tank, electromagnetic detector on the combine grain elevator drive shaft to monitor the grain elevator rotational speed, and lastly a DGPS receiver on the combine console roof to indicate the travel speed and geo-position in the field. All these measured parameters were made to display in-real time on the touch panel screen of the embedded system on-board the combine for the interest of the combine operator and also made to display in-real time on the monitor of the toughbook at the on-ground base station for the interest of the system controller. Static calibrations on the individual sensors showed excellent measurement linearity having R2 values within 0.8760 to 1.000 ranges. The wireless communication between the embedded system on-board the combine and the toughbook at the on-ground base station could be sustained to a maximum distance of 185 m apart. Site specific variability maps of crop yield, harvested grain moisture content, combine cutting width, combine traveling speed, combine field capacity, and combine field efficiency within the harvested area could be produced from the data obtained with the instrumentation system using a GIS software. Keywords: Grain harvesting, Paddy mechanization, Precision farming, Wireless data transmission, Yield monitoring.


2012 ◽  
Author(s):  
Yew Leong Chui ◽  
Abdul Rahman Ramli

Kertas kerja ini membentangkan sistem kawalan dan pemantauan jarak jauh dengan menggunakan SC12. Satu penukar protokol dengan unit interpretasi data telah direka bentuk dan dilaksana. Untuk menambahkan saluran operasi unit interpretasi data, satu ciri auto–diagnostik pintar telah dilaksana untuk mengesan ralat. Kata kunci: Sistem terbenam, sistem pemicuan dan pemantauan, auto-diagnostik This paper presents a real–time embedded remote triggering and monitoring system using SC12. A protocol converter associated with data interpretation unit has been developed and implemented. In order to expand simultaneous operation channel with data interpretation unit, intelligent auto–diagnostic features has been implemented for run–time error detection purposes. Key words: Embedded system, triggering and monitoring system, auto-diagnostic


2014 ◽  
Vol 912-914 ◽  
pp. 1283-1286
Author(s):  
Zhi Ping Zhang ◽  
Chang Xu Jiang ◽  
Rong Nian Tang

Large-scale instrumentation equipment usually runs a long time, sometimes even runs all night long. If not arrange the laboratory staff guard it, when equipment fails, it can only be allowed to develop, and in severe cases can cause the large instrument and equipment damage; To address this issue, propose a large apparatus and tele-monitoring system based on embedded system and through the HD camera collects the status of the indicator lamps of the large instrument, and through the algorithms identification of the embedded system, and the JPEG encoding and control, and using GPRS module sends images to the experimenter's mobile phone to achieve the remote monitoring of equipment; And researchers can the control the system via mobile phone to send instructions to achieve the remote control.


2012 ◽  
Vol 220-223 ◽  
pp. 1977-1981
Author(s):  
Bing Hui Fan ◽  
Peng Ji ◽  
Jian Gong Li

In order to make prosthetic work in unstructured environments in real time to solve the inverse kinematics problem, the coordinates of the location of the end of the workspace of the manipulator rod needed to know. The spatial orientation value of random object relative to prosthesis basic coordinates be calculated in real time is realized in the embedded system by means of two three-dimensional attitude sensors and one laser ranging sensor.This method can provide the necessary raw information for the multiple degree of freedom prosthesis which works in an unstructured environment to complete the operational tasks assigned.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2679
Author(s):  
Zhoujing Ye ◽  
Guannan Yan ◽  
Ya Wei ◽  
Bin Zhou ◽  
Ning Li ◽  
...  

Traditional road-embedded monitoring systems for traffic monitoring have the disadvantages of a short life, high energy consumption and data redundancy, resulting in insufficient durability and high cost. In order to improve the durability and efficiency of the road-embedded monitoring system, a pavement vibration monitoring system is developed based on the Internet of things (IoT). The system includes multi-acceleration sensing nodes, a gateway, and a cloud platform. The key design principles and technologies of each part of the system are proposed, which provides valuable experience for the application of IoT monitoring technology in road infrastructures. Characterized by low power consumption, distributed computing, and high extensibility properties, the pavement vibration IoT monitoring system can realize the monitoring, transmission, and analysis of pavement vibration signal, and acquires the real-time traffic information. This road-embedded system improves the intellectual capacity of road infrastructure and is conducive to the construction of a new generation of smart roads.


10.29007/q4cf ◽  
2018 ◽  
Author(s):  
Ronak Vithlani ◽  
Siddharth Fultariya ◽  
Mahesh Jivani ◽  
Haresh Pandya

In this paper, we have described an operative prototype for Internet of Things (IoT) used for consistent monitoring various environmental sensors by means of low cost open source embedded system. The explanation about the unified network construction and the interconnecting devices for the consistent measurement of environmental parameters by various sensors and broadcast of data through internet is being presented. The framework of the monitoring system is based on a combination of embedded sensing units, information structure for data collection, and intellectual and context responsiveness. The projected system does not involve a devoted server computer with respect to analogous systems and offers a light weight communication protocol to monitor environment data using sensors. Outcomes are inspiring as the consistency of sensing information broadcast through the projected unified network construction is very much reliable. The prototype was experienced to create real-time graphical information rather than a test bed set-up.


2018 ◽  
pp. 94-101
Author(s):  
Dmytro Fedasyuk ◽  
Tetyana Marusenkova ◽  
Ratybor Chopey

The work deals with a significant problem of ensuring that the execution time of a firmware running inside a microcontroller-based real-time embedded system never goes out of its expected range, no matter for how long the embedded system has been used. Once having been tested before the first usage, a newly created embedded system is gradually getting slower in its response, due to the fact that its hardware components get worn-out with aging. A possible solution is a replacement of the hardware components that most contribute to such a change in the response time of the embedded system. If such a replacement takes place too far in advance, long before hardware components actually start showing any decline in their response time, the above-mentioned solution is cost-ineffective and impractical, as it leads to a waste of equipment and efforts. We introduce a method for predicting the appropriate maintenance period of a real-time embedded system on the basis of the characteristics of its hardware components.


Sign in / Sign up

Export Citation Format

Share Document