scholarly journals Adapting a Cloud-Based Irrigation Scheduler for Sugar Beets in the High Plains

2020 ◽  
Vol 36 (4) ◽  
pp. 479-488
Author(s):  
Allan A. Andales ◽  
Andrew C. Bartlett ◽  
Troy A. Bauder ◽  
Erik M. Wardle

Highlights An existing sugar beet crop coefficient curve (K cr ) was modified to better represent canopy development in northeast Colorado conditions. The modified K cr curve improved the estimated soil water deficits (net irrigation requirements) calculated by the cloud-based Water Irrigation Scheduler for Efficient Application (WISE App). Feedback from sugar beet growers and agronomists helped expand WISE applicability in the northern High Plains with access to additional weather station networks and functionality to aggregate irrigation data across multiple sugar beet fields or regions. Abstract . The convergence of agrometeorological network, database, and cloud-computing technologies has enabled greater accessibility of irrigation management tools for growers. The goal of this research and outreach project was to adapt an existing cloud-based irrigation scheduler (WISE) for use by sugar beet (Beta vulgaris L.) producers in eastern Colorado and a wider area of a cooperative operating in Colorado, Nebraska, Wyoming, and Montana. Four center pivot sugar beet fields in northeast Colorado were monitored during the 2013 and 2014 growing seasons. Soil water, leaf area index (LAI), and weather data were used to estimate the soil water deficit (net irrigation requirement) and to modify a crop coefficient (Kcr) curve originally reported in the literature based on growing degree days (GDD). The average cumulative GDDs for sugar beets to mature (100% maturity) was 2,944°C·d. The localized Kcr had a peak value (Kcr,mid) occurring between 43% and 69% of maturity, which corresponded to effective full cover (LAI = 3) and start of leaf senescence, respectively. In contrast, the original Kcr curve from literature had a longer duration of Kcr,mid spanning 33% to 83% of maturity. Use of the modified Kcr curve in lieu of the original Kcr curve in WISE reduced the relative error of soil water deficits by 12% to 35%. Feedback and collaborations from representative sugar beet growers and agronomists in the Western Sugar Cooperative led to expansion of WISE weather data access in the High Plains to include sugar beet growing areas in western Nebraska, eastern and northern Wyoming, and southern Montana. Keywords: Crop coefficient, Evapotranspiration, Irrigation scheduling, Soil water balance, Soil water deficit, Sugar beets.

2019 ◽  
Vol 35 (1) ◽  
pp. 39-50
Author(s):  
H. C. Pringle, III ◽  
L. L. Falconer ◽  
D. K. Fisher ◽  
L. J. Krutz

Abstract. Irrigated acreage is expanding and groundwater supplies are decreasing in the Mississippi Delta. Efficient irrigation scheduling of soybean [ (L.) Merr] will aid in conservation efforts to sustain groundwater resources. The objective of this study was to develop irrigation initiation recommendations for soybean grown on Mississippi Delta soils. Field studies were conducted on a deep silty clay (SiC) in 2012, 2013, 2014, and 2015 and on a deep silty clay loam (SiCL) and deep silt loam (SiL) or loam (L) soil in 2013, 2014, and 2015. Irrigation was initiated multiple times during the growing season and soybean yield and net return were determined to evaluate the effectiveness of each initiation timing. Growth stage, soil water potential (SWP), and soil water deficit (SWD) were compared at these initiation timings to determine which parameter or combination of parameters consistently predicted the resulting greatest yields and net returns. Stress conditions that reduce yield can occur at any time from late vegetative stages to full seed on these deep soils. The wide range of trigger values found for SWP and SWD to increase yields in different years emphasizes the complexity of irrigation scheduling. Monitoring soil moisture by itself or use of a single trigger value is not sufficient to optimize irrigation scheduling to maximize soybean yield with the least amount of water every year on these soils. Monitoring one or more parameters (e.g., leaf water potential, canopy temperature, air temperature, humidity, solar radiation, and wind) is needed in conjunction with soil moisture to directly or indirectly quantify the abiotic stresses on the plant to better define when a yield reducing stress is occurring. Keywords: Irrigation initiation, Irrigation scheduling, Soil water deficit, Soil water potential, Soybean, Water conservation.


2001 ◽  
Vol 52 (5) ◽  
pp. 587 ◽  
Author(s):  
D. M. Whitfield

The management of ground water recharge in south-eastern Australia relies on the formulation of agricultural practices that utilise rainfall before it moves below the root-zone. Annual cycles of soil water content were therefore measured in a red-brown earth subjected to 5 fallow-free crop sequences, to 2 crop sequences that included fallow, and to 3 pastures. Changes in soil water content induced by wheat, barley, lupin, pea, safflower, canola, and fallow were compared with those of annual pasture and 2 monocultures of the deep-rooted perennials phalaris and lucerne in 3 years of study. Mean minimum soil water content (0–1.6 m) seen in December and May was approximately 355 mm in lucerne and phalaris, 410 mm in annuals (crops and pasture), and 475 mm in fallow. Corresponding soil water deficits appropriate to lucerne, annuals, and fallow were 185, 135, and 65 mm, respectively. Lucerne and annuals both removed approximately 85 mm water from the upper 0.6 m of the soil profile. Differences arose in the subsoil below 0.6 m, where lucerne, annuals, and fallow produced soil water deficits of approximately 100, 50, and 25 mm, respectively. The difference in soil water deficit of deep-rooted perennials and annuals was therefore caused by the extra 50 mm of water extracted by lucerne and phalaris below 0.6 m in the period September–December. The dry subsoil endured through summer to promote the storage, by soil, of rainfall in winter. The data suggest that the spatial utility of an agronomic recharge control option in south-eastern Australia depends on the magnitude of the soil water deficit associated with the vegetation. The soil water deficit, relative to winter (May–August) rainfall, discriminates between areas where annuals suffice for recharge control, where lucerne and phalaris are required for recharge control, and where agronomic annuals and perennials are both conducive to high rates of drainage.


1998 ◽  
Vol 25 (6) ◽  
pp. 645 ◽  
Author(s):  
Júlio Osório ◽  
M. Leonor Osório ◽  
M. Manuela Chaves ◽  
João S. Pereira

Potted cuttings of three Eucalyptus globulus Labill. clones (AR3, CN44, MP11) were grown over 6 months in a greenhouse under three watering regimes: well watered (HW), moderate soil water deficit (MS) and severe soil water deficit (SS). Transpiration efficiency (W = total dry matter/water transpired) and leaf intrinsic gas exchange efficiency (A/gs = carbon assimilation rate/stomatal conductance) increased under water stress and were positively correlated with the stable carbon isotope composition of leaf tissue (δ13C). The clones did not vary significantly with respect to A/gs and W. However, statistically significant differences were detected among clones in δ13C, A and biomass. W did not differ between the MS and SS regimes, probably due to plant acclimation to increasing soil water deficits. The increase in W with soil water deficits relative to the well watered control was primarily associated with stomatal closure, but was also influenced by differences in respiratory carbon losses (?c) and variation in the leaf-to-air water vapour difference (v). Variance in ?c and v may explain partially why the two levels of soil water deficit were different in regard to δ13C but not in terms of W.


2003 ◽  
Vol 83 (5) ◽  
pp. 623-630 ◽  
Author(s):  
S. M. McGinn ◽  
A. Shepherd

Regional climate change scenarios for the Canadian prairies were generated using historic weather data and daily data from two Canadian Climate Centre general circulation models (GCM). Model CGCM1-A was a recent version release while its predecessor was model GCMII. The GCM data were combined with historic values to generate two additional scenarios. All scenarios were used to drive the modified Versatile Soil Moisture Budget model that assessed soil moisture, aridity and other agroclimatic indices. The modelled results for all scenarios were compared to those using the historic climate data. The model predicted earlier seeding dates for spring wheat between 18 and 26 d. Early seeding and harvest was shown to be an appropriate adaptive strategy that avoided more arid conditions in the late summer. The soil water deficit was lower under GCMII than historic values by 46 mm. For CGCM1-A, the soil water deficit was decreased by 8 mm across the Prairie Provinces compared to historic values. GCM scenarios predicted unchanged or increased soil water in the top 120 cm soil across the Canadian prairies compared to the historic scenario. There were some regions such as south eastern Saskatchewan and southern Manitoba where reductions in summer rainfall (for CGCM1-A) were large. These regions experienced the greatest benefit of earlier seeding dates. Key words: Climate change, agriculture, aridity, growing degree-days, soil moisture, seeding date, harvest date


1998 ◽  
Vol 26 (3) ◽  
pp. 289-296
Author(s):  
M. Jurišić ◽  
Ž. Vidaček ◽  
Ž. Bukvić ◽  
D. Brkić ◽  
R. Emert

1984 ◽  
Vol 103 (1) ◽  
pp. 189-199 ◽  
Author(s):  
M. J. Goss ◽  
K. R. Howse ◽  
Judith M. Vaughan-Williams ◽  
M. A. Ward ◽  
W. Jenkins

SummaryIn each of the years from September 1977 to July 1982 winter wheat was grown on one or more of three clay soil sites (clay content 35–55%) in Oxfordshire where the climate is close to the average for the area of England growing winter cereals.The effects on crop water use of different soil management practices, including ploughing, direct drilling and subsoil drainage, are compared. Cultivation treatment had little effect on the maximum depth of water extraction, which on average in these clay soils was 1·54 m below the soil surface. Maximum soil water deficit was also little affected by cultivation; the maximum recorded value was 186±7·6 mm. Subsoil drainage increased the maximum depth of water extraction by approximately 15 cm and the maximum soil water deficit by about 17 mm.Generally soil management had little effect on either total water use by the crop which was found to be close to the potential evaporation estimated by the method of Penman, or water use efficiency which for these crops was about 52 kg/ha par mm water used.Results are discussed in relation to limitations to potential yield.


1997 ◽  
Vol 24 (1) ◽  
pp. 19-24 ◽  
Author(s):  
P. J. Sexton ◽  
J. M. Bennett ◽  
K. J. Boote

Abstract Peanut (Arachis hypogaea L.) fruit growth is sensitive to surface soil (0-5 cm) conditions due to its subterranean fruiting habit. This study was conducted to determine the effect of soil water content in the pegging zone (0-5 cm) on peanut pod growth rate and development. A pegging-pan-root-tube apparatus was used to separately control soil water content in the pegging and root zone for greenhouse trials. A field study also was conducted using portable rainout shelters to create a soil water deficit. Pod phenology, pod and seed growth rates, and final pod and seed dry weights were determined. In greenhouse studies, dry pegging zone soil delayed pod and seed development. In the field, soil water deficits in the pegging and root zone decreased pod and seed growth rates by approximately 30% and decreased weight per seed from 563 to 428 mg. Pegs initiating growth during drought stress demonstrated an ability to suspend development during the period of soil water deficit and to re-initiate pod development after the drought stress was relieved.


2013 ◽  
Vol 41 (2) ◽  
pp. 524 ◽  
Author(s):  
Qiu-Dan NI ◽  
Ying-Ning ZOU ◽  
Qiang-Sheng WU ◽  
Yong-Ming HUANG

Arbuscular mycorrhizal fungi (AMF) can enhance tolerance of plants to soil water deficit, whereas morphological observations of reactive oxygen species and antioxidant enzyme system are poorly studied. The present study thereby evaluated temporal variations of the antioxidant enzyme system in citrus (Citrus tangerina) seedlings colonized by Glomus etunicatum and G. mosseae over a 12-day period of soil drying. Root colonization by G. etunicatum and G. mosseae decreased with soil drying days from 32.0 to 1.0% and 50.1 to 4.5% in 0-day to 12-day, respectively. Compared to the non-AM controls, the AMF colonized plants had significantly lower tissue (both leaves and roots) hydrogen peroxide (H2O2) and superoxide anion radical (O2•–) concentrations during soil water deficit, whereas 1.03–1.92, 1.25–1.84 and 1.18–1.69 times higher enzyme activity in superoxide dismutase, peroxidase (POD) and catalase. In situ leaf H2O2 and root POD location also showed that AM seedlings had less leaf H2O2 but higher root POD accumulation. Furthermore, significantly higher root infection and antioxidant enzymatic activities in plants colonized with G. mosseae expressed than with G. etunicatum during the soil drying. These results demonstrated that the AMs could confer greater tolerance of citrus seedlings to soil water deficit through an enhancement in their antioxidant enzyme defence system whilst an decrease level in H2O2 and O2•–.


Sign in / Sign up

Export Citation Format

Share Document