Prediction of Human Responses to Dairy Odor Using an Electronic Nose and Neural Networks

2018 ◽  
Vol 61 (2) ◽  
pp. 399-409 ◽  
Author(s):  
Fangle Chang ◽  
Paul Heinemann

Abstract. Odor emitted from dairy operations may cause negative reactions by farm neighbors. Identification and evaluation of such malodors is vital for better understanding of human response and methods for mitigating effects of odors. The human nose is a valuable tool for odor assessment, but using human panels can be costly and time-consuming, and human evaluation of odor is subjective. Sensing devices, such as an electronic nose, have been widely used to measure volatile emissions from different materials. The challenge, though, is connecting human assessment of odors with the quantitative measurements from instruments. In this work, a prediction system was designed and developed to use instruments to predict human assessment of odors from common dairy operations. The model targets are the human responses to odor samples evaluated using a general pleasantness scale ranging from -11 (extremely unpleasant) to +11 (extremely pleasant). The model inputs were the electronic nose measurements. Three different neural networks, a Levenberg-Marquardt back-propagation neural network (LMBNN), a scaled conjugate gradient back-propagation neural network (CGBNN), and a resilient back-propagation neural network (RPBNN), were applied to connect these two sources of information (human assessments and instrument measurements). The results showed that the LMBNN model can predict human assessments with accuracy as high as 78% within a 10% range and as high as 63% within a 5% range of the targets in independent validation. In addition, the LMBNN model performed with the best stability in both training and independent validation. Keywords: Animal production, Hedonic tone, Olfactometric models.

2017 ◽  
Vol 26 (4) ◽  
pp. 625-639 ◽  
Author(s):  
Gang Wang

AbstractCurrently, most artificial neural networks (ANNs) represent relations, such as back-propagation neural network, in the manner of functional approximation. This kind of ANN is good at representing the numeric relations or ratios between things. However, for representing logical relations, these ANNs have disadvantages because their representation is in the form of ratio. Therefore, to represent logical relations directly, we propose a novel ANN model called probabilistic logical dynamical neural network (PLDNN). Inhibitory links are introduced to connect exciting links rather than neurons so as to inhibit the connected exciting links conditionally to make them represent logical relations correctly. The probabilities are assigned to the weights of links to indicate the belief degree in logical relations under uncertain situations. Moreover, the network structure of PLDNN is less limited in topology than traditional ANNs, and it is dynamically built completely according to the data to make it adaptive. PLDNN uses both the weights of links and the interconnection structure to memorize more information. The model could be applied to represent logical relations as the complement to numeric ANNs.


2018 ◽  
Vol 4 (2) ◽  
pp. 90-99
Author(s):  
Mertha Endah Ervina ◽  
Rini Silvi ◽  
Intaniah Ratna Nur Wisisono

Train scheduling affects the level of customer satisfaction and profitability of the train service provider. The prediction method of Back-propagation Neural Network (BPNN) has relatively slow convergence. Therefore, this study uses Resilient Back-propagation (Rprop) because it has a more fast convergence and high accuracy. The model produced is a model for Jabodetabek, Java (non-Jabodetabek), Sumatra, and Indonesia. From the results of data analysis conducted, it can be concluded that the performance of neural network model with Resilient Back-propagation (Rprop) formed from training data gives very accurate prediction accuracy level with mean absolute percentage error (MAPE) less than 10% for each model. Then forecasting for the next 12 months conducted and the results compared with the data testing, Rprop provides a very high forecasting accuracy with MAPE value below 10%. The MAPE value for each forecasting the number of rail passengers is 7.50% for Jabodetabek, 5.89% for Java (non-Jabodetabek), 5.36% for Sumatra and 4.80% for Indonesia. That is, four neural network architectures with Rprop can be used for this case with very accurate forecasting results.


Author(s):  
T. Zh. Mazakov ◽  
D. N. Narynbekovna

Now a day’s security is a big issue, the whole world has been working on the face recognition techniques as face is used for the extraction of facial features. An analysis has been done of the commonly used face recognition techniques. This paper presents a system for the recognition of face for identification and verification purposes by using Principal Component Analysis (PCA) with Back Propagation Neural Networks (BPNN) and the implementation of face recognition system is done by using neural network. The use of neural network is to produce an output pattern from input pattern. This system for facial recognition is implemented in MATLAB using neural networks toolbox. Back propagation Neural Network is multi-layered network in which weights are fixed but adjustment of weights can be done on the basis of sigmoidal function. This algorithm is a learning algorithm to train input and output data set. It also calculates how the error changes when weights are increased or decreased. This paper consists of background and future perspective of face recognition techniques and how these techniques can be improved.


2014 ◽  
Vol 513-517 ◽  
pp. 695-698
Author(s):  
Dai Yuan Zhang ◽  
Jian Hui Zhan

Traditional short-term traffic flow forecasting of road usually based on back propagation neural network, which has a low prediction accuracy and convergence speed. This paper introduces a spline weight function neural networks which has a feature that the weight function can well reflect sample information after training, thus propose a short-term traffic flow forecasting method base on the spline weight function neural network, specify the network learning algorithm, and make a comparative tests bases on the actual data. The result proves that in short-term traffic flow forecasting, the spline weight function neural network is more effective than traditional methods.


Author(s):  
Parham Piroozan

This paper describes an intelligent control system that uses electro-optics and neural networks to control the flow of air over a flexible wall. In this investigation a pressure sensor which was part of the wall of the wind tunnel and an optical apparatus were used to produce moire´ fringes. A back propagation neural network was used to analyze the fringe patterns and to classify the pressures into four levels. A second neural network was used to recognize the pressure patterns and to provide the input to a control system that was capable of modifying the shape of the flexible wall in order to preserve the stability of the flow. The flexible wall was part of the wall of the wind tunnel and was installed in the upstream of the flow. It was made of silicone rubber and had an area of 76 mm by 76 mm. There were 15 rows of actuators installed under the flexible wall which were used to change the shape of the wall. In the downstream of the flow was an optical pressure sensor which had the same dimensions as the flexible wall and consisted of a 15 × 15 array of small diaphragms. These diaphragms responded to the pressure fluctuations in the boundary layer flow and were the source of the signals for the optical system. A CCD camera viewed the pressure sensor through an optical apparatus which produced moire´ fringes. A back propagation neural network analyzed the fringe patterns and classified the pressures into four levels. The classified pressures which was a 15 × 15 array of numbers ranging from 1 to 4 was the input to a second back propagation neural network which was used to recognize the pressure patterns. The output from the back propagation neural network used for pattern recognition provided the input to a control system that changed the shape of the flexible wall. This paper presents the experimental results as well as the computer simulations which were created for this project. This includes the complete process of creating the slope fringes, classifying the pressures into four levels, recognizing the wall pressure patterns and generating the output signals to the actuator for changing the shape of the flexible wall.


Sign in / Sign up

Export Citation Format

Share Document